Answer :
### Problema 6:
Resuelve la ecuación:
[tex]\[ x^2 + 6x = x(x + 3) + 15 \][/tex]
Primero, simplificamos ambos lados de la ecuación.
[tex]\[ LHS (lado izquierdo): x^2 + 6x \][/tex]
[tex]\[ RHS (lado derecho): x(x + 3) + 15 = x^2 + 3x + 15 \][/tex]
Ahora, combinemos los términos semejantes:
[tex]\[ x^2 + 6x = x^2 + 3x + 15 \][/tex]
Luego, restamos [tex]\(x^2 + 3x\)[/tex] de ambos lados:
[tex]\[ 6x - 3x = 15 \][/tex]
[tex]\[ 3x = 15 \][/tex]
Dividimos ambos lados por 3:
[tex]\[ x = 5 \][/tex]
Por lo tanto, la respuesta correcta es:
b. 5
### Problema 7:
Calcula el valor de [tex]\(x\)[/tex] en la ecuación:
[tex]\[ 3x - 5 + 2x = 7x + 2 \][/tex]
Primero, combinamos los términos semejantes:
[tex]\[ 5x - 5 = 7x + 2 \][/tex]
Restamos [tex]\(7x\)[/tex] de ambos lados:
[tex]\[ 5x - 7x - 5 = 2 \][/tex]
[tex]\[ -2x - 5 = 2 \][/tex]
Luego, sumamos 5 a ambos lados:
[tex]\[ -2x = 7 \][/tex]
Dividimos ambos lados por -2:
[tex]\[ x = -\frac{7}{2} \][/tex]
Por lo tanto, la respuesta correcta es:
a. [tex]\(-\frac{7}{2}\)[/tex]
### Problema 8:
Calcula el valor de [tex]\(x\)[/tex] en la ecuación:
[tex]\[ 5 - \frac{x}{3} = \frac{x}{2} + 6 \][/tex]
Primero multiplicamos ambos lados de la ecuación por 6 para eliminar los denominadores:
[tex]\[ 30 - 2x = 3x + 36 \][/tex]
Ahora, combinamos términos semejantes:
[tex]\[ -2x - 3x = 36 - 30 \][/tex]
[tex]\[ -5x = 6 \][/tex]
Dividimos ambos lados por -5:
[tex]\[ x = -\frac{6}{5} \][/tex]
Por lo tanto, la respuesta correcta es:
b. [tex]\(-\frac{6}{5}\)[/tex]
### Problema 9:
Resuelve la ecuación:
[tex]\[ 7 + \frac{x}{3} = \frac{3x}{2} \][/tex]
Primero, multiplicamos ambos lados de la ecuación por 6 para eliminar los denominadores:
[tex]\[ 42 + 2x = 9x \][/tex]
Luego, combinamos términos semejantes:
[tex]\[ 42 = 9x - 2x \][/tex]
[tex]\[ 42 = 7x \][/tex]
Dividimos ambos lados por 7:
[tex]\[ x = 6 \][/tex]
Por lo tanto, la respuesta correcta es:
b. 6
### Problema 10:
Resuelve la ecuación:
[tex]\[ 13x - 13 = 17x + 7 \][/tex]
Primero, restamos [tex]\(13x\)[/tex] de ambos lados:
[tex]\[ -13 = 4x + 7 \][/tex]
Luego, restamos 7 de ambos lados:
[tex]\[ -20 = 4x \][/tex]
Dividimos ambos lados por 4:
[tex]\[ x = -5 \][/tex]
Por lo tanto, la respuesta correcta es:
c. -5
Resuelve la ecuación:
[tex]\[ x^2 + 6x = x(x + 3) + 15 \][/tex]
Primero, simplificamos ambos lados de la ecuación.
[tex]\[ LHS (lado izquierdo): x^2 + 6x \][/tex]
[tex]\[ RHS (lado derecho): x(x + 3) + 15 = x^2 + 3x + 15 \][/tex]
Ahora, combinemos los términos semejantes:
[tex]\[ x^2 + 6x = x^2 + 3x + 15 \][/tex]
Luego, restamos [tex]\(x^2 + 3x\)[/tex] de ambos lados:
[tex]\[ 6x - 3x = 15 \][/tex]
[tex]\[ 3x = 15 \][/tex]
Dividimos ambos lados por 3:
[tex]\[ x = 5 \][/tex]
Por lo tanto, la respuesta correcta es:
b. 5
### Problema 7:
Calcula el valor de [tex]\(x\)[/tex] en la ecuación:
[tex]\[ 3x - 5 + 2x = 7x + 2 \][/tex]
Primero, combinamos los términos semejantes:
[tex]\[ 5x - 5 = 7x + 2 \][/tex]
Restamos [tex]\(7x\)[/tex] de ambos lados:
[tex]\[ 5x - 7x - 5 = 2 \][/tex]
[tex]\[ -2x - 5 = 2 \][/tex]
Luego, sumamos 5 a ambos lados:
[tex]\[ -2x = 7 \][/tex]
Dividimos ambos lados por -2:
[tex]\[ x = -\frac{7}{2} \][/tex]
Por lo tanto, la respuesta correcta es:
a. [tex]\(-\frac{7}{2}\)[/tex]
### Problema 8:
Calcula el valor de [tex]\(x\)[/tex] en la ecuación:
[tex]\[ 5 - \frac{x}{3} = \frac{x}{2} + 6 \][/tex]
Primero multiplicamos ambos lados de la ecuación por 6 para eliminar los denominadores:
[tex]\[ 30 - 2x = 3x + 36 \][/tex]
Ahora, combinamos términos semejantes:
[tex]\[ -2x - 3x = 36 - 30 \][/tex]
[tex]\[ -5x = 6 \][/tex]
Dividimos ambos lados por -5:
[tex]\[ x = -\frac{6}{5} \][/tex]
Por lo tanto, la respuesta correcta es:
b. [tex]\(-\frac{6}{5}\)[/tex]
### Problema 9:
Resuelve la ecuación:
[tex]\[ 7 + \frac{x}{3} = \frac{3x}{2} \][/tex]
Primero, multiplicamos ambos lados de la ecuación por 6 para eliminar los denominadores:
[tex]\[ 42 + 2x = 9x \][/tex]
Luego, combinamos términos semejantes:
[tex]\[ 42 = 9x - 2x \][/tex]
[tex]\[ 42 = 7x \][/tex]
Dividimos ambos lados por 7:
[tex]\[ x = 6 \][/tex]
Por lo tanto, la respuesta correcta es:
b. 6
### Problema 10:
Resuelve la ecuación:
[tex]\[ 13x - 13 = 17x + 7 \][/tex]
Primero, restamos [tex]\(13x\)[/tex] de ambos lados:
[tex]\[ -13 = 4x + 7 \][/tex]
Luego, restamos 7 de ambos lados:
[tex]\[ -20 = 4x \][/tex]
Dividimos ambos lados por 4:
[tex]\[ x = -5 \][/tex]
Por lo tanto, la respuesta correcta es:
c. -5