What is the area of a parallelogram whose vertices are [tex]A(-12,2), B(6,2)[/tex], [tex]C(-2,-3)[/tex], and [tex]D(-20,-3)[/tex]?

Enter your answer in the box.

[tex]\[\boxed{\text{units}^2}\][/tex]



Answer :

To find the area of the parallelogram with vertices [tex]\( A(-12, 2) \)[/tex], [tex]\( B(6, 2) \)[/tex], [tex]\( C(-2, -3) \)[/tex], and [tex]\( D(-20, -3) \)[/tex], we need to follow a series of steps:

1. Determine the length of the base:
Given the vertices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] lie on the same horizontal line ([tex]\(y = 2\)[/tex]), we can find the length of the base by calculating the distance between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

[tex]\[ \text{Base length} = |B_x - A_x| = |6 - (-12)| = |6 + 12| = 18 \][/tex]

2. Determine the height:
Since [tex]\( A \)[/tex] and [tex]\( C \)[/tex] lie on different horizontal lines ([tex]\( y = 2 \)[/tex] and [tex]\( y = -3 \)[/tex]), the height of the parallelogram is the vertical distance between these lines.

[tex]\[ \text{Height} = |A_y - C_y| = |2 - (-3)| = |2 + 3| = 5 \][/tex]

3. Calculate the area:
The formula for the area of a parallelogram is given by:

[tex]\[ \text{Area} = \text{base} \times \text{height} \][/tex]

Substituting the values:

[tex]\[ \text{Area} = 18 \times 5 = 90 \, \text{square units} \][/tex]

Therefore, the area of the parallelogram is
[tex]\[ \boxed{90} \, \text{units}^2 \][/tex]