If [tex]f(x) = 1 - x[/tex], which value is equivalent to [tex]|f(i)|[/tex]?

A. 0
B. 1
C. [tex]\sqrt{2}[/tex]
D. [tex]\sqrt{-1}[/tex]



Answer :

Certainly! Let's solve the problem step-by-step.

First, we are given the function [tex]\( f(x) = 1 - x \)[/tex], and we need to find the value of [tex]\( |f(i)| \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit such that [tex]\( i = \sqrt{-1} \)[/tex].

1. Substitute [tex]\( x = i \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(i) = 1 - i \][/tex]

2. Calculate the magnitude of the complex number [tex]\( 1 - i \)[/tex]:

The magnitude (or modulus) of a complex number [tex]\( a + bi \)[/tex] is given by [tex]\( \sqrt{a^2 + b^2} \)[/tex].

For the complex number [tex]\( 1 - i \)[/tex], [tex]\( a = 1 \)[/tex] and [tex]\( b = -1 \)[/tex].

3. Compute [tex]\( a^2 + b^2 \)[/tex]:

[tex]\[ a^2 + b^2 = 1^2 + (-1)^2 = 1 + 1 = 2 \][/tex]

4. Take the square root of the result:

[tex]\[ \sqrt{2} \][/tex]

Therefore, the magnitude [tex]\( |1 - i| \)[/tex] is [tex]\( \sqrt{2} \)[/tex].

So, the value equivalent to [tex]\( |f(i)| \)[/tex] is [tex]\( \sqrt{2} \)[/tex].

The correct answer is:

[tex]\[ \sqrt{2} \][/tex]