6. On donne l'expression [tex]$A=\frac{96 \times 10^{-4}}{3 \times 10^{-6}}$[/tex]. Le résultat de [tex]$A$[/tex] sous forme d'un nombre entier est :

a) 320
b) 32
c) 3200
d) 32000



Answer :

To solve the expression [tex]\( A = \frac{96 \times 10^{-4}}{3 \times 10^{-6}} \)[/tex] and find the result in its integer form, we will follow a detailed step-by-step approach:

1. Write down the given expression:

[tex]\[ A = \frac{96 \times 10^{-4}}{3 \times 10^{-6}} \][/tex]

2. Separate the constants and the powers of 10:

[tex]\[ A = \left(\frac{96}{3}\right) \times \left(\frac{10^{-4}}{10^{-6}}\right) \][/tex]

3. Simplify the constants:

[tex]\[ \frac{96}{3} = 32 \][/tex]

4. Simplify the powers of 10 using the property [tex]\(\frac{10^a}{10^b} = 10^{a-b}\)[/tex]:

[tex]\[ \frac{10^{-4}}{10^{-6}} = 10^{-4 - (-6)} = 10^{-4 + 6} = 10^{2} \][/tex]

5. Combine the simplified values:

[tex]\[ A = 32 \times 10^{2} \][/tex]

6. Convert [tex]\(10^{2}\)[/tex] to its numerical value:

[tex]\[ 10^{2} = 100 \][/tex]

7. Multiply the constants:

[tex]\[ A = 32 \times 100 = 3200 \][/tex]

Thus, the result of the expression [tex]\( A \)[/tex] in its integer form is [tex]\( \boxed{3200} \)[/tex].

Therefore, the correct answer is:

c) 3200