Answer :

Let's simplify the given expression step-by-step. The given expression is:

[tex]\[ -10(-10h + 5) + 3(-3h + 7) \][/tex]

### Step 1: Distribute the coefficients inside the parentheses

First, we distribute the [tex]\(-10\)[/tex] through the terms inside the first set of parentheses:

[tex]\[ -10 \cdot -10h + (-10) \cdot 5 \][/tex]

Calculating each term separately:

[tex]\[ -10 \cdot -10h = 100h \][/tex]
[tex]\[ -10 \cdot 5 = -50 \][/tex]

So, the expression [tex]\( -10(-10h + 5) \)[/tex] simplifies to:

[tex]\[ 100h - 50 \][/tex]

Next, we distribute the [tex]\(3\)[/tex] through the terms inside the second set of parentheses:

[tex]\[ 3 \cdot -3h + 3 \cdot 7 \][/tex]

Calculating each term separately:

[tex]\[ 3 \cdot -3h = -9h \][/tex]
[tex]\[ 3 \cdot 7 = 21 \][/tex]

So, the expression [tex]\( 3(-3h + 7) \)[/tex] simplifies to:

[tex]\[ -9h + 21 \][/tex]

### Step 2: Combine the simplified terms

Now, let's combine all the simplified terms from both distributions:

[tex]\[ 100h - 50 + (-9h + 21) \][/tex]

This can be rewritten as:

[tex]\[ 100h - 50 - 9h + 21 \][/tex]

### Step 3: Group and combine like terms

Group the terms with [tex]\(h\)[/tex] together and the constant terms together:

[tex]\[ (100h - 9h) + (-50 + 21) \][/tex]

Combine the like terms:

[tex]\[ 100h - 9h = 91h \][/tex]
[tex]\[ -50 + 21 = -29 \][/tex]

### Final Simplified Expression

So, the final expression in its simplest terms is:

[tex]\[ 91h - 29 \][/tex]

Therefore, the simplified expression is:

[tex]\[ 91h - 29 \][/tex]