Answer :
Let's simplify the given expression step-by-step. The given expression is:
[tex]\[ -10(-10h + 5) + 3(-3h + 7) \][/tex]
### Step 1: Distribute the coefficients inside the parentheses
First, we distribute the [tex]\(-10\)[/tex] through the terms inside the first set of parentheses:
[tex]\[ -10 \cdot -10h + (-10) \cdot 5 \][/tex]
Calculating each term separately:
[tex]\[ -10 \cdot -10h = 100h \][/tex]
[tex]\[ -10 \cdot 5 = -50 \][/tex]
So, the expression [tex]\( -10(-10h + 5) \)[/tex] simplifies to:
[tex]\[ 100h - 50 \][/tex]
Next, we distribute the [tex]\(3\)[/tex] through the terms inside the second set of parentheses:
[tex]\[ 3 \cdot -3h + 3 \cdot 7 \][/tex]
Calculating each term separately:
[tex]\[ 3 \cdot -3h = -9h \][/tex]
[tex]\[ 3 \cdot 7 = 21 \][/tex]
So, the expression [tex]\( 3(-3h + 7) \)[/tex] simplifies to:
[tex]\[ -9h + 21 \][/tex]
### Step 2: Combine the simplified terms
Now, let's combine all the simplified terms from both distributions:
[tex]\[ 100h - 50 + (-9h + 21) \][/tex]
This can be rewritten as:
[tex]\[ 100h - 50 - 9h + 21 \][/tex]
### Step 3: Group and combine like terms
Group the terms with [tex]\(h\)[/tex] together and the constant terms together:
[tex]\[ (100h - 9h) + (-50 + 21) \][/tex]
Combine the like terms:
[tex]\[ 100h - 9h = 91h \][/tex]
[tex]\[ -50 + 21 = -29 \][/tex]
### Final Simplified Expression
So, the final expression in its simplest terms is:
[tex]\[ 91h - 29 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 91h - 29 \][/tex]
[tex]\[ -10(-10h + 5) + 3(-3h + 7) \][/tex]
### Step 1: Distribute the coefficients inside the parentheses
First, we distribute the [tex]\(-10\)[/tex] through the terms inside the first set of parentheses:
[tex]\[ -10 \cdot -10h + (-10) \cdot 5 \][/tex]
Calculating each term separately:
[tex]\[ -10 \cdot -10h = 100h \][/tex]
[tex]\[ -10 \cdot 5 = -50 \][/tex]
So, the expression [tex]\( -10(-10h + 5) \)[/tex] simplifies to:
[tex]\[ 100h - 50 \][/tex]
Next, we distribute the [tex]\(3\)[/tex] through the terms inside the second set of parentheses:
[tex]\[ 3 \cdot -3h + 3 \cdot 7 \][/tex]
Calculating each term separately:
[tex]\[ 3 \cdot -3h = -9h \][/tex]
[tex]\[ 3 \cdot 7 = 21 \][/tex]
So, the expression [tex]\( 3(-3h + 7) \)[/tex] simplifies to:
[tex]\[ -9h + 21 \][/tex]
### Step 2: Combine the simplified terms
Now, let's combine all the simplified terms from both distributions:
[tex]\[ 100h - 50 + (-9h + 21) \][/tex]
This can be rewritten as:
[tex]\[ 100h - 50 - 9h + 21 \][/tex]
### Step 3: Group and combine like terms
Group the terms with [tex]\(h\)[/tex] together and the constant terms together:
[tex]\[ (100h - 9h) + (-50 + 21) \][/tex]
Combine the like terms:
[tex]\[ 100h - 9h = 91h \][/tex]
[tex]\[ -50 + 21 = -29 \][/tex]
### Final Simplified Expression
So, the final expression in its simplest terms is:
[tex]\[ 91h - 29 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 91h - 29 \][/tex]