Answer :

To simplify the expression [tex]\( 5(-4p - 8p + 3) - 7p \)[/tex], follow these steps:

1. Distribute the 5 within the parentheses:
[tex]\[ 5(-4p - 8p + 3) = 5 \cdot (-4p) + 5 \cdot (-8p) + 5 \cdot 3 \][/tex]
This results in:
[tex]\[ 5 \cdot (-4p) = -20p \\ 5 \cdot (-8p) = -40p \\ 5 \cdot 3 = 15 \][/tex]

2. Combine these distributed terms together:
[tex]\[ -20p - 40p + 15 \][/tex]

3. Combine like terms within the result:
[tex]\[ -20p - 40p = -60p \\ \][/tex]
Thus, we have:
[tex]\[ -60p + 15 \][/tex]

4. Subtract the remaining term from the expression:

Note that we still need to account for the [tex]\(-7p\)[/tex] that was initially outside the parentheses. Incorporate this term into the expression:
[tex]\[ -60p + 15 - 7p \][/tex]
Combine the [tex]\( p \)[/tex]-terms:
[tex]\[ -60p - 7p = -67p \][/tex]
Therefore, the final simplified expression is:
[tex]\[ -67p + 15 \][/tex]

So, the simplified form of the expression [tex]\( 5(-4p - 8p + 3) - 7p \)[/tex] is:
[tex]\[ -67p + 15 \][/tex]