Solve the equation:

[tex]\[ 3.5^2 + x^2 = 5.6^2 \][/tex]

or

[tex]\[ x^2 + 3.5^2 = 5.6^2 \][/tex]

What is the value of [tex]\( x \)[/tex]?

Round to the nearest hundredth. Enter your answer in the box below:



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 3.5^2 + x^2 = 5.6^2 \)[/tex], we will follow these steps:

1. Square the known values [tex]\( 3.5 \)[/tex] and [tex]\( 5.6 \)[/tex]:

[tex]\[ 3.5^2 = 3.5 \times 3.5 = 12.25 \][/tex]

[tex]\[ 5.6^2 = 5.6 \times 5.6 = 31.36 \][/tex]

2. Substitute these squares into the original equation:

[tex]\[ 12.25 + x^2 = 31.36 \][/tex]

3. Rearrange the equation to solve for [tex]\( x^2 \)[/tex]:

[tex]\[ x^2 = 31.36 - 12.25 \][/tex]

4. Subtract the squares:

[tex]\[ x^2 = 31.36 - 12.25 = 19.11 \][/tex]

5. Take the square root of both sides to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \sqrt{19.11} \][/tex]

6. Calculate the square root and round to the nearest hundredth:

[tex]\[ x \approx 4.37 \][/tex]

So, the value of [tex]\( x \)[/tex] rounded to the nearest hundredth is [tex]\( 4.37 \)[/tex].