Answer :
Let's solve the system of linear equations step-by-step.
We have two equations:
[tex]\[ x + 2y = 5 \quad \text{(Equation 1)} \][/tex]
and
[tex]\[ 2x + y = 4 \quad \text{(Equation 2)} \][/tex]
First, let's solve Equation 2 for [tex]\(y\)[/tex]:
[tex]\[ 2x + y = 4 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ y = 4 - 2x \quad \text{(Equation 3)} \][/tex]
Now, substitute the expression for [tex]\(y\)[/tex] from Equation 3 into Equation 1:
[tex]\[ x + 2(4 - 2x) = 5 \][/tex]
Distribute [tex]\(2\)[/tex] inside the parenthesis:
[tex]\[ x + 8 - 4x = 5 \][/tex]
Combine like terms:
[tex]\[ -3x + 8 = 5 \][/tex]
Subtract 8 from both sides:
[tex]\[ -3x = -3 \][/tex]
Divide both sides by -3:
[tex]\[ x = 1 \][/tex]
Now that we have the value of [tex]\(x\)[/tex], substitute it back into Equation 3 to find [tex]\(y\)[/tex]:
[tex]\[ y = 4 - 2(1) \][/tex]
Simplify:
[tex]\[ y = 4 - 2 \][/tex]
[tex]\[ y = 2 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 1 \quad \text{and} \quad y = 2 \][/tex]
Finally, to find the value of [tex]\(x + y\)[/tex]:
[tex]\[ x + y = 1 + 2 \][/tex]
[tex]\[ x + y = 3 \][/tex]
So, the value of [tex]\(x + y\)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
We have two equations:
[tex]\[ x + 2y = 5 \quad \text{(Equation 1)} \][/tex]
and
[tex]\[ 2x + y = 4 \quad \text{(Equation 2)} \][/tex]
First, let's solve Equation 2 for [tex]\(y\)[/tex]:
[tex]\[ 2x + y = 4 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ y = 4 - 2x \quad \text{(Equation 3)} \][/tex]
Now, substitute the expression for [tex]\(y\)[/tex] from Equation 3 into Equation 1:
[tex]\[ x + 2(4 - 2x) = 5 \][/tex]
Distribute [tex]\(2\)[/tex] inside the parenthesis:
[tex]\[ x + 8 - 4x = 5 \][/tex]
Combine like terms:
[tex]\[ -3x + 8 = 5 \][/tex]
Subtract 8 from both sides:
[tex]\[ -3x = -3 \][/tex]
Divide both sides by -3:
[tex]\[ x = 1 \][/tex]
Now that we have the value of [tex]\(x\)[/tex], substitute it back into Equation 3 to find [tex]\(y\)[/tex]:
[tex]\[ y = 4 - 2(1) \][/tex]
Simplify:
[tex]\[ y = 4 - 2 \][/tex]
[tex]\[ y = 2 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 1 \quad \text{and} \quad y = 2 \][/tex]
Finally, to find the value of [tex]\(x + y\)[/tex]:
[tex]\[ x + y = 1 + 2 \][/tex]
[tex]\[ x + y = 3 \][/tex]
So, the value of [tex]\(x + y\)[/tex] is:
[tex]\[ \boxed{3} \][/tex]