The radius of the Earth is approximately 3959 mi.

What is the distance [tex]\( x \)[/tex] to the horizon from a viewpoint that is 10 mi above the Earth's surface?

Round your answer to the nearest mile. Enter your answer in the box.

[tex]\[ x = \text{________} \text{mi} \][/tex]



Answer :

To determine the distance to the horizon from a viewpoint that is 10 miles above the Earth's surface, you can use the following formula for the distance to the horizon:

[tex]\[ \text{distance} = \sqrt{2 \cdot \text{radius} \cdot \text{height} + \text{height}^2} \][/tex]

Here's how to solve it step-by-step:

1. Identify the given values:
- Radius of the Earth ([tex]\( r \)[/tex]) = 3959 miles
- Height above the Earth's surface ([tex]\( h \)[/tex]) = 10 miles

2. Substitute these values into the formula:

[tex]\[ \text{distance} = \sqrt{2 \cdot 3959 \cdot 10 + 10^2} \][/tex]

3. Break it down inside the sqrt calculation:
- First calculate [tex]\( 2 \cdot 3959 \cdot 10 \)[/tex]:

[tex]\( 2 \cdot 3959 \cdot 10 = 79180 \)[/tex]

- Then calculate [tex]\( 10^2 \)[/tex]:

[tex]\( 10^2 = 100 \)[/tex]

- Now add these two results together:

[tex]\( 79180 + 100 = 79280 \)[/tex]

4. Take the square root of the sum:

[tex]\[ \sqrt{79280} \approx 281.5670435260491 \][/tex]

5. Finally, round the result to the nearest mile:

[tex]\[ \approx 282 \text{ miles} \][/tex]

So, the distance to the horizon from a viewpoint that is 10 miles above the Earth's surface is approximately 282 miles.