Find the coordinates of the midpoint of [tex]$\overline{BC}$[/tex] with endpoints [tex]$B(5, 9)$[/tex] and [tex]$C(-4, -3)$[/tex].

A. [tex]$(1, 3)$[/tex]
B. [tex]$(0.5, 3)$[/tex]
C. [tex]$(0.5, 1.5)$[/tex]
D. [tex]$(1, 6)$[/tex]



Answer :

To find the coordinates of the midpoint of the line segment [tex]\(\overline{BC}\)[/tex] with endpoints [tex]\(B(5,9)\)[/tex] and [tex]\(C(-4,-3)\)[/tex], we use the midpoint formula. The midpoint formula is:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(B\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(C\)[/tex]. So, we have:

[tex]\[ (x_1, y_1) = (5, 9) \quad \text{and} \quad (x_2, y_2) = (-4, -3) \][/tex]

Substitute these values into the midpoint formula:

[tex]\[ \text{Midpoint} = \left( \frac{5 + (-4)}{2}, \frac{9 + (-3)}{2} \right) \][/tex]

Calculate each part separately:

1. For the x-coordinate:
[tex]\[ \frac{5 + (-4)}{2} = \frac{5 - 4}{2} = \frac{1}{2} = 0.5 \][/tex]

2. For the y-coordinate:
[tex]\[ \frac{9 + (-3)}{2} = \frac{9 - 3}{2} = \frac{6}{2} = 3 \][/tex]

So, the coordinates of the midpoint are:

[tex]\[ (0.5, 3) \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{(0.5, 3)} \][/tex]