Answer :
Certainly! Let's begin by breaking down the problem step by step:
1. Start with the initial expression:
[tex]\[ \left(0.031 \times 10^2\right) \times \frac{10^5}{10^2} \][/tex]
2. First, simplify the coefficient part:
[tex]\[ 0.031 \times 10^2 \][/tex]
Perform the multiplication:
[tex]\[ 0.031 \times 100 = 3.1 \][/tex]
3. Now simplify the fraction:
[tex]\[ \frac{10^5}{10^2} \][/tex]
To divide powers of ten, subtract the exponents:
[tex]\[ 10^{5-2} = 10^3 \][/tex]
4. Combine the results from the above steps:
[tex]\[ 3.1 \times 10^3 \][/tex]
Thus, the number expressed in proper scientific notation is:
[tex]\[ 3.1 \times 10^3 \][/tex]
Now, enter the coefficient and the exponent in the corresponding boxes:
Coefficient: [tex]\(\boxed{3.1}\)[/tex] \\
Exponent: [tex]\(\boxed{3}\)[/tex]
1. Start with the initial expression:
[tex]\[ \left(0.031 \times 10^2\right) \times \frac{10^5}{10^2} \][/tex]
2. First, simplify the coefficient part:
[tex]\[ 0.031 \times 10^2 \][/tex]
Perform the multiplication:
[tex]\[ 0.031 \times 100 = 3.1 \][/tex]
3. Now simplify the fraction:
[tex]\[ \frac{10^5}{10^2} \][/tex]
To divide powers of ten, subtract the exponents:
[tex]\[ 10^{5-2} = 10^3 \][/tex]
4. Combine the results from the above steps:
[tex]\[ 3.1 \times 10^3 \][/tex]
Thus, the number expressed in proper scientific notation is:
[tex]\[ 3.1 \times 10^3 \][/tex]
Now, enter the coefficient and the exponent in the corresponding boxes:
Coefficient: [tex]\(\boxed{3.1}\)[/tex] \\
Exponent: [tex]\(\boxed{3}\)[/tex]