Determine whether the table of values represents a linear, quadratic, or exponential function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 0 \\
-1 & 1.5 \\
0 & 3 \\
1 & 4.5 \\
2 & 6 \\
\hline
\end{tabular}

A. Linear
B. Quadratic
C. Exponential



Answer :

To determine whether the given table of values represents a linear, quadratic, or exponential function, we will analyze the pattern of the [tex]\( y \)[/tex]-values as [tex]\( x \)[/tex] increases. We do this by calculating the differences between successive [tex]\( y \)[/tex]-values:

Here is the given table of values:

[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline -2 & 0 \\ -1 & 1.5 \\ 0 & 3 \\ 1 & 4.5 \\ 2 & 6 \\ \hline \end{array} \][/tex]

Step 1: Calculate the first differences

We find the differences between each consecutive pair of [tex]\( y \)[/tex]-values:

[tex]\[ \begin{aligned} y_{-1} - y_{-2} &= 1.5 - 0 = 1.5 \\ y_0 - y_{-1} &= 3 - 1.5 = 1.5 \\ y_1 - y_0 &= 4.5 - 3 = 1.5 \\ y_2 - y_1 &= 6 - 4.5 = 1.5 \\ \end{aligned} \][/tex]

Step 2: Check for consistency in the differences

Notice that all the first differences are equal to 1.5:

[tex]\[ 1.5, \; 1.5, \; 1.5, \; 1.5 \][/tex]

When the first differences are equal, the function is linear. This consistency in the differences indicates that the rate of change of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is constant.

Step 3: Conclude the function type

Since all the first differences are equal, the given table of values represents a linear function.

Therefore, the function given by the table of values is:
a. Linear