Sure! Let's walk through the steps to solve the given problem and record the number in scientific notation:
1. Start with the Initial Value:
[tex]\[
0.0045 \times 10^3
\][/tex]
Multiply 0.0045 by [tex]\(10^3\)[/tex]:
[tex]\[
0.0045 \times 10^3 = 4.5
\][/tex]
2. Next Calculation:
[tex]\[
4.5 \times \frac{10^7}{10^3}
\][/tex]
Simplify the fraction [tex]\(\frac{10^7}{10^3}\)[/tex]:
[tex]\[
\frac{10^7}{10^3} = 10^{7-3} = 10^4
\][/tex]
Now multiply 4.5 by [tex]\(10^4\)[/tex]:
[tex]\[
4.5 \times 10^4 = 4.5 \times 10^4
\][/tex]
So, the number [tex]\( (0.0045 \times 10^3) \times \frac{10^7}{10^3} \)[/tex] in scientific notation is:
[tex]\[
\boxed{4.5} \times 10^{\boxed{4}}
\][/tex]
Here, the coefficient is [tex]\( 4.5 \)[/tex] and the exponent is [tex]\( 4 \)[/tex].