What is the product?

[tex]\[ \left(3a^2b^4\right)\left(-8ab^3\right) \][/tex]

A. [tex]\(-24ab\)[/tex]

B. [tex]\(-24a^2b^7\)[/tex]

C. [tex]\(-24a^2b^{12}\)[/tex]

D. [tex]\(-24a^3b^7\)[/tex]



Answer :

Let's find the product of the given expressions:

[tex]\[ \left(3 a^2 b^4\right)\left(-8 a b^3\right) \][/tex]

We will break this down into steps:

1. Product of the coefficients:
[tex]\[ 3 \times (-8) = -24 \][/tex]

2. Product of the [tex]\(a\)[/tex] terms:
[tex]\[ a^2 \times a^1 = a^{2+1} = a^3 \][/tex]

3. Product of the [tex]\(b\)[/tex] terms:
[tex]\[ b^4 \times b^3 = b^{4+3} = b^7 \][/tex]

Combining the results from these three steps, we get:

[tex]\[ -24 a^3 b^7 \][/tex]

Thus, the product of [tex]\(\left(3 a^2 b^4\right)\left(-8 a b^3\right)\)[/tex] is:

[tex]\[ \boxed{-24 a^3 b^7} \][/tex]