What is the product?

[tex]\[
\left(-6a^3b + 2ab^2\right)\left(5a^2 - 2ab^2 - b\right)
\][/tex]

A. [tex]\(-30a^6b + 12a^3b^2 + 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2\)[/tex]

B. [tex]\(-30a^5b + 12a^4b^3 + 16a^3b^2 - 4a^2b^4 - 2ab^3\)[/tex]

C. [tex]\(30a^5b - 12a^4b^3 + 4a^3b^2 - 4a^2b^4 - 2ab^3\)[/tex]

D. [tex]\(30a^6b - 12a^3b^2 - 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2\)[/tex]



Answer :

Let's break down the given expression step by step to find the product:

We start with the algebraic expressions:
[tex]\[ \left(-6 a^3 b + 2 a b^2\right)\left(5 a^2 - 2 a b^2 - b\right) \][/tex]

Let's distribute each term in the first expression by each term in the second expression, and then combine like terms.

Step 1: Multiply [tex]\( -6 a^3 b \)[/tex] by every term in [tex]\( 5 a^2 - 2 a b^2 - b \)[/tex]:
[tex]\[ -6 a^3 b \cdot 5 a^2 = -30 a^5 b \][/tex]
[tex]\[ -6 a^3 b \cdot -2 a b^2 = 12 a^4 b^3 \][/tex]
[tex]\[ -6 a^3 b \cdot -b = 6 a^3 b^2 \][/tex]

Step 2: Multiply [tex]\( 2 a b^2 \)[/tex] by every term in [tex]\( 5 a^2 - 2 a b^2 - b \)[/tex]:
[tex]\[ 2 a b^2 \cdot 5 a^2 = 10 a^3 b^2 \][/tex]
[tex]\[ 2 a b^2 \cdot -2 a b^2 = -4 a^2 b^4 \][/tex]
[tex]\[ 2 a b^2 \cdot -b = -2 a b^3 \][/tex]

Step 3: Combine all the terms we obtained from steps 1 and 2:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 6 a^3 b^2 + 10 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Step 4: Combine like terms:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + (6 a^3 b^2 + 10 a^3 b^2) - 4 a^2 b^4 - 2 a b^3 \][/tex]
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Thus, the product of the expressions is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Therefore, the correct answer is:
[tex]\[ -30a^5b + 12a^4b^3 + 16a^3b^2 - 4a^2b^4 - 2ab^3 \][/tex]