What is the product of the following expression?

[tex]\[
(3x - 6)(2x^2 - 7x + 1)
\][/tex]

A. [tex]\(-12x^2 + 42x - 6\)[/tex]

B. [tex]\(-12x^2 + 21x + 6\)[/tex]

C. [tex]\(6x^3 - 33x^2 + 45x - 6\)[/tex]

D. [tex]\(6x^3 - 27x^2 - 39x + 6\)[/tex]



Answer :

To find the product of the expressions [tex]\((3x - 6)\)[/tex] and [tex]\((2x^2 - 7x + 1)\)[/tex], we need to perform polynomial multiplication.

Let's break it down step-by-step:

1. Distribute [tex]\(3x\)[/tex] to each term in the second polynomial:
[tex]\[ 3x \cdot (2x^2 - 7x + 1) = 3x \cdot 2x^2 + 3x \cdot (-7x) + 3x \cdot 1 \][/tex]
[tex]\[ = 6x^3 - 21x^2 + 3x \][/tex]

2. Distribute [tex]\(-6\)[/tex] to each term in the second polynomial:
[tex]\[ -6 \cdot (2x^2 - 7x + 1) = -6 \cdot 2x^2 + (-6) \cdot (-7x) + (-6) \cdot 1 \][/tex]
[tex]\[ = -12x^2 + 42x - 6 \][/tex]

3. Add the results of the two distributions together:
[tex]\[ (6x^3 - 21x^2 + 3x) + (-12x^2 + 42x - 6) \][/tex]

4. Combine like terms:
- The [tex]\(x^3\)[/tex] term: [tex]\(6x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(-21x^2 - 12x^2 = -33x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(3x + 42x = 45x\)[/tex]
- The constant term: [tex]\(-6\)[/tex]

So, the final expanded and simplified expression is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Therefore, the product [tex]\((3x - 6)(2x^2 - 7x + 1)\)[/tex] is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

From the given options, the correct one is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]