Natasha wants to use the Fermi process to estimate the number of pennies that would fill a toy chest. As part of the process, she needs to estimate the volume of the toy chest. She figures the toy chest is about 50 in. long, 20 in. wide, and 20 in. tall.

Which estimate best approximates the volume of the toy chest?

A. [tex]2 \times 10^3 \, \text{in}^3[/tex]
B. [tex]2 \times 10^4 \, \text{in}^3[/tex]
C. [tex]2 \times 10^5 \, \text{in}^3[/tex]
D. [tex]2 \times 10^6 \, \text{in}^3[/tex]



Answer :

To estimate the volume of Natasha's toy chest, we start by considering the dimensions provided: 50 inches in length, 20 inches in width, and 20 inches in height.

1. Identify Dimensions:
- Length: 50 inches
- Width: 20 inches
- Height: 20 inches

2. Volume Calculation:
Using the formula for the volume of a rectangular prism (which is also applicable to this toy chest), we calculate the volume as follows:

[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]

3. Substitute the Given Values:
[tex]\[ \text{Volume} = 50\, \text{inches} \times 20\, \text{inches} \times 20\, \text{inches} \][/tex]

4. Perform the Multiplication:
- First multiply the width and height: [tex]\(20 \times 20 = 400\)[/tex]
- Then multiply the result by the length: [tex]\(50 \times 400 = 20000\)[/tex]

Therefore, the volume of the toy chest is:

[tex]\[ 20000\, \text{in}^3 \][/tex]

5. Select the Closest Estimate:
Given the options:

- [tex]\(2 \times 10^3\)[/tex] in[tex]\(^3\)[/tex]
- [tex]\(2 \times 10^4\)[/tex] in[tex]\(^3\)[/tex]
- [tex]\(2 \times 10^5\)[/tex] in[tex]\(^3\)[/tex]
- [tex]\(2 \times 10^6\)[/tex] in[tex]\(^3\)[/tex]

The volume we calculated (20000 in[tex]\(^3\)[/tex]) matches [tex]\(2 \times 10^4\)[/tex] in[tex]\(^3\)[/tex].

Hence, the best estimate that approximates the volume of the toy chest is:

[tex]\[ 2 \times 10^4 \, \text{in}^3 \][/tex]