Answer :
To simplify the expression
[tex]\[ \left(\frac{2 y^{-2} z^{-3}}{x^{-3} y^{-2} z^{-1}}\right)^{-5}, \][/tex]
we will proceed step-by-step.
### Step 1: Simplify the inner fraction
First, simplify the fraction inside the parentheses:
[tex]\[ \frac{2 y^{-2} z^{-3}}{x^{-3} y^{-2} z^{-1}}. \][/tex]
### Step 2: Combine the exponents
We combine the like terms by canceling out the common terms in the numerator and the denominator.
Since [tex]\(y^{-2}\)[/tex] appears in both the numerator and the denominator, they cancel each other out:
[tex]\[ \frac{y^{-2}}{y^{-2}} = 1. \][/tex]
For the remaining terms, we use the laws of exponents:
[tex]\[ \frac{a^m}{a^n} = a^{m-n}. \][/tex]
Applying this to the [tex]\(z\)[/tex] terms:
[tex]\[ \frac{z^{-3}}{z^{-1}} = z^{-3 - (-1)} = z^{-3 + 1} = z^{-2}. \][/tex]
For the [tex]\(x\)[/tex] terms:
[tex]\[ \frac{1}{x^{-3}} = x^3. \][/tex]
### Step 3: Simplify the fraction entirely
After simplifying, we have:
[tex]\[ \frac{2 z^{-3}}{x^{-3} z^{-1}} = 2 \cdot x^3 \cdot z^{-2}. \][/tex]
### Step 4: Apply the negative exponent
Now we apply the negative exponent of [tex]\(-5\)[/tex] to the simplified expression:
[tex]\[ \left(2 x^3 z^{-2}\right)^{-5}. \][/tex]
Applying the exponent rule [tex]\((ab)^n = a^n b^n\)[/tex]:
[tex]\[ 2^{-5} \cdot (x^3)^{-5} \cdot (z^{-2})^{-5}. \][/tex]
We simplify each term individually:
[tex]\[ 2^{-5} = \frac{1}{2^5} = \frac{1}{32}, \][/tex]
[tex]\[ (x^3)^{-5} = x^{3 \cdot (-5)} = x^{-15}, \][/tex]
[tex]\[ (z^{-2})^{-5} = z^{-2 \cdot (-5)} = z^{10}. \][/tex]
### Step 5: Combine the results
Combining these results, we get:
[tex]\[ \frac{1}{32} x^{-15} z^{10}. \][/tex]
To express this as a single fraction:
[tex]\[ \frac{z^{10}}{32 x^{15}}. \][/tex]
Therefore, the simplified expression is:
[tex]\[ \boxed{\frac{z^{10}}{32 x^{15}}}. \][/tex]
[tex]\[ \left(\frac{2 y^{-2} z^{-3}}{x^{-3} y^{-2} z^{-1}}\right)^{-5}, \][/tex]
we will proceed step-by-step.
### Step 1: Simplify the inner fraction
First, simplify the fraction inside the parentheses:
[tex]\[ \frac{2 y^{-2} z^{-3}}{x^{-3} y^{-2} z^{-1}}. \][/tex]
### Step 2: Combine the exponents
We combine the like terms by canceling out the common terms in the numerator and the denominator.
Since [tex]\(y^{-2}\)[/tex] appears in both the numerator and the denominator, they cancel each other out:
[tex]\[ \frac{y^{-2}}{y^{-2}} = 1. \][/tex]
For the remaining terms, we use the laws of exponents:
[tex]\[ \frac{a^m}{a^n} = a^{m-n}. \][/tex]
Applying this to the [tex]\(z\)[/tex] terms:
[tex]\[ \frac{z^{-3}}{z^{-1}} = z^{-3 - (-1)} = z^{-3 + 1} = z^{-2}. \][/tex]
For the [tex]\(x\)[/tex] terms:
[tex]\[ \frac{1}{x^{-3}} = x^3. \][/tex]
### Step 3: Simplify the fraction entirely
After simplifying, we have:
[tex]\[ \frac{2 z^{-3}}{x^{-3} z^{-1}} = 2 \cdot x^3 \cdot z^{-2}. \][/tex]
### Step 4: Apply the negative exponent
Now we apply the negative exponent of [tex]\(-5\)[/tex] to the simplified expression:
[tex]\[ \left(2 x^3 z^{-2}\right)^{-5}. \][/tex]
Applying the exponent rule [tex]\((ab)^n = a^n b^n\)[/tex]:
[tex]\[ 2^{-5} \cdot (x^3)^{-5} \cdot (z^{-2})^{-5}. \][/tex]
We simplify each term individually:
[tex]\[ 2^{-5} = \frac{1}{2^5} = \frac{1}{32}, \][/tex]
[tex]\[ (x^3)^{-5} = x^{3 \cdot (-5)} = x^{-15}, \][/tex]
[tex]\[ (z^{-2})^{-5} = z^{-2 \cdot (-5)} = z^{10}. \][/tex]
### Step 5: Combine the results
Combining these results, we get:
[tex]\[ \frac{1}{32} x^{-15} z^{10}. \][/tex]
To express this as a single fraction:
[tex]\[ \frac{z^{10}}{32 x^{15}}. \][/tex]
Therefore, the simplified expression is:
[tex]\[ \boxed{\frac{z^{10}}{32 x^{15}}}. \][/tex]