Answer :

To determine the value of [tex]\( g \)[/tex] that makes the equation [tex]\( (x + 7)(x - 4) = x^2 + gx - 28 \)[/tex] true, we'll start by expanding the left-hand side of the equation using the distributive property (also known as the FOIL method for binomials).

1. First: Multiply the first terms of each binomial:
[tex]\[ x \cdot x = x^2 \][/tex]

2. Outer: Multiply the outer terms:
[tex]\[ x \cdot (-4) = -4x \][/tex]

3. Inner: Multiply the inner terms:
[tex]\[ 7 \cdot x = 7x \][/tex]

4. Last: Multiply the last terms of each binomial:
[tex]\[ 7 \cdot (-4) = -28 \][/tex]

Next, combine all these products:
[tex]\[ x^2 - 4x + 7x - 28 \][/tex]

Now, combine like terms:
[tex]\[ x^2 + 3x - 28 \][/tex]

We are given that:
[tex]\[ (x + 7)(x - 4) = x^2 + gx - 28 \][/tex]

By comparing the two equations [tex]\( x^2 + 3x - 28 \)[/tex] and [tex]\( x^2 + gx - 28 \)[/tex], we see that the coefficient of [tex]\( x \)[/tex] on the left-hand side (3) must equal the coefficient of [tex]\( x \)[/tex] on the right-hand side ([tex]\( g \)[/tex]).

Therefore, the value of [tex]\( g \)[/tex] that makes the equation true is:
[tex]\[ g = 3 \][/tex]