Answer :
To determine if lines [tex]\( m \)[/tex] and [tex]\( I \)[/tex] are parallel, we need to check if the given angles [tex]\( m23 \)[/tex] and [tex]\( m27 \)[/tex] are equal.
1. Calculate [tex]\( m23 \)[/tex] when [tex]\( x = 15 \)[/tex]:
Given:
[tex]\[ m23 = (4x + 12)^\circ \][/tex]
Substitute [tex]\( x = 15 \)[/tex]:
[tex]\[ m23 = 4(15) + 12 \][/tex]
[tex]\[ m23 = 60 + 12 \][/tex]
[tex]\[ m23 = 72^\circ \][/tex]
2. Calculate [tex]\( m27 \)[/tex] when [tex]\( x = 15 \)[/tex]:
Given:
[tex]\[ m27 = (80 - x)^\circ \][/tex]
Substitute [tex]\( x = 15 \)[/tex]:
[tex]\[ m27 = 80 - 15 \][/tex]
[tex]\[ m27 = 65^\circ \][/tex]
3. Compare [tex]\( m23 \)[/tex] and [tex]\( m27 \)[/tex]:
Since:
[tex]\[ m23 = 72^\circ \quad \text{and} \quad m27 = 65^\circ \][/tex]
[tex]\( m23 \neq m27 \)[/tex], therefore, the lines [tex]\( m \)[/tex] and [tex]\( I \)[/tex] are not parallel when [tex]\( x = 15 \)[/tex].
4. Find the value of [tex]\( x \)[/tex] that makes [tex]\( m23 \)[/tex] and [tex]\( m27 \)[/tex] equal (and hence the lines parallel):
Set [tex]\( m23 \)[/tex] equal to [tex]\( m27 \)[/tex]:
[tex]\[ 4x + 12 = 80 - x \][/tex]
Combine like terms:
[tex]\[ 4x + x + 12 = 80 \][/tex]
[tex]\[ 5x + 12 = 80 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ 5x = 80 - 12 \][/tex]
[tex]\[ 5x = 68 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{68}{5} \][/tex]
[tex]\[ x = 13.6 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that will make lines [tex]\( m \)[/tex] and [tex]\( I \)[/tex] parallel is [tex]\( x = 13.6 \)[/tex].
1. Calculate [tex]\( m23 \)[/tex] when [tex]\( x = 15 \)[/tex]:
Given:
[tex]\[ m23 = (4x + 12)^\circ \][/tex]
Substitute [tex]\( x = 15 \)[/tex]:
[tex]\[ m23 = 4(15) + 12 \][/tex]
[tex]\[ m23 = 60 + 12 \][/tex]
[tex]\[ m23 = 72^\circ \][/tex]
2. Calculate [tex]\( m27 \)[/tex] when [tex]\( x = 15 \)[/tex]:
Given:
[tex]\[ m27 = (80 - x)^\circ \][/tex]
Substitute [tex]\( x = 15 \)[/tex]:
[tex]\[ m27 = 80 - 15 \][/tex]
[tex]\[ m27 = 65^\circ \][/tex]
3. Compare [tex]\( m23 \)[/tex] and [tex]\( m27 \)[/tex]:
Since:
[tex]\[ m23 = 72^\circ \quad \text{and} \quad m27 = 65^\circ \][/tex]
[tex]\( m23 \neq m27 \)[/tex], therefore, the lines [tex]\( m \)[/tex] and [tex]\( I \)[/tex] are not parallel when [tex]\( x = 15 \)[/tex].
4. Find the value of [tex]\( x \)[/tex] that makes [tex]\( m23 \)[/tex] and [tex]\( m27 \)[/tex] equal (and hence the lines parallel):
Set [tex]\( m23 \)[/tex] equal to [tex]\( m27 \)[/tex]:
[tex]\[ 4x + 12 = 80 - x \][/tex]
Combine like terms:
[tex]\[ 4x + x + 12 = 80 \][/tex]
[tex]\[ 5x + 12 = 80 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ 5x = 80 - 12 \][/tex]
[tex]\[ 5x = 68 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{68}{5} \][/tex]
[tex]\[ x = 13.6 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that will make lines [tex]\( m \)[/tex] and [tex]\( I \)[/tex] parallel is [tex]\( x = 13.6 \)[/tex].