If [tex]A^2 + B^2 = A^2 + X^2[/tex], then [tex]B[/tex] equals:

a) [tex]\pm X[/tex]
b) [tex]X^2 - 2A^2[/tex]
c) [tex]\pm A[/tex]
d) [tex]A^2 + X^2[/tex]



Answer :

To solve for [tex]\( B \)[/tex] given the equation [tex]\( A^2 + B^2 = A^2 + X^2 \)[/tex]:

1. Start with the given equation:
[tex]\[ A^2 + B^2 = A^2 + X^2 \][/tex]

2. Subtract [tex]\( A^2 \)[/tex] from both sides to isolate [tex]\( B^2 \)[/tex]:
[tex]\[ B^2 = X^2 \][/tex]

3. To solve for [tex]\( B \)[/tex], take the square root of both sides:
[tex]\[ B = \pm X \][/tex]

So, the correct answer is:
[tex]\[ \boxed{\pm X} \][/tex]

Therefore, the correct option is:
a) [tex]\(\pm X\)[/tex]