Which equation represents a line with a slope of [tex] \frac{5}{2} [/tex] and a [tex] y [/tex]-intercept of [tex] -\frac{8}{3} [/tex]?

A. [tex] y = \frac{5}{2}x - \frac{8}{3} [/tex]
B. [tex] y = \frac{5}{2}x + \frac{8}{3} [/tex]
C. [tex] y = -\frac{5}{2}x - \frac{8}{3} [/tex]
D. [tex] y = -\frac{5}{2}x + \frac{8}{3} [/tex]



Answer :

To determine the equation of a line given a slope and a y-intercept, one should use the slope-intercept form of a linear equation, which is written as:

[tex]\[ y = mx + b \][/tex]

where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

Given the slope [tex]\( \frac{5}{2} \)[/tex] and the y-intercept [tex]\( -\frac{8}{3} \)[/tex], we can directly substitute these values into the slope-intercept form as follows:

1. The slope [tex]\( m \)[/tex] is [tex]\( \frac{5}{2} \)[/tex].
2. The y-intercept [tex]\( b \)[/tex] is [tex]\( -\frac{8}{3} \)[/tex].

Substitute these values into the slope-intercept form:

[tex]\[ y = \left( \frac{5}{2} \right)x + \left( -\frac{8}{3} \right) \][/tex]

Simplify the equation for clarity:

[tex]\[ y = \frac{5}{2} x - \frac{8}{3} \][/tex]

Therefore, the equation of the line with a slope of [tex]\( \frac{5}{2} \)[/tex] and a y-intercept of [tex]\( -\frac{8}{3} \)[/tex] is:

[tex]\[ y = \frac{5}{2} x - \frac{8}{3} \][/tex]

Thus, the equation representing the line is:

[tex]\[ y = \frac{5}{2} x - \frac{8}{3} \][/tex]