Answer :
To expand [tex]\((1 + (2x)^4)\)[/tex] using the binomial theorem, we start by understanding the binomial theorem itself, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this problem, [tex]\(a = 1\)[/tex], [tex]\(b = (2x)^4\)[/tex], and [tex]\(n = 1\)[/tex]. Let's proceed with the expansion:
Given expression:
[tex]\[ \left(1 + (2x)^4\right)^1 \][/tex]
The binomial theorem now simplifies to:
[tex]\[ (1 + b)^1 = 1 + b \][/tex]
Substituting [tex]\(b = (2x)^4\)[/tex]:
[tex]\[ (1 + (2x)^4)^1 = 1 + (2x)^4 \][/tex]
Now we expand:
[tex]\[ (2x)^4 = 2^4 \cdot x^4 = 16 \cdot x^4 = 16x^4 \][/tex]
So the expanded form becomes:
[tex]\[ 1 + 16x^4 \][/tex]
Thus, the expansion of [tex]\((1 + (2x)^4)\)[/tex] is:
[tex]\[ 1 + 16x^4 \][/tex]
Therefore, the simplified form is:
[tex]\[ 16 x^4 + 1 \][/tex]
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this problem, [tex]\(a = 1\)[/tex], [tex]\(b = (2x)^4\)[/tex], and [tex]\(n = 1\)[/tex]. Let's proceed with the expansion:
Given expression:
[tex]\[ \left(1 + (2x)^4\right)^1 \][/tex]
The binomial theorem now simplifies to:
[tex]\[ (1 + b)^1 = 1 + b \][/tex]
Substituting [tex]\(b = (2x)^4\)[/tex]:
[tex]\[ (1 + (2x)^4)^1 = 1 + (2x)^4 \][/tex]
Now we expand:
[tex]\[ (2x)^4 = 2^4 \cdot x^4 = 16 \cdot x^4 = 16x^4 \][/tex]
So the expanded form becomes:
[tex]\[ 1 + 16x^4 \][/tex]
Thus, the expansion of [tex]\((1 + (2x)^4)\)[/tex] is:
[tex]\[ 1 + 16x^4 \][/tex]
Therefore, the simplified form is:
[tex]\[ 16 x^4 + 1 \][/tex]