Rectangle EFGH is translated according to the rule [tex]T_{-5,9}(x, y)[/tex]. If the coordinates of the pre-image of point H are [tex](-2, -3)[/tex], what are the coordinates of [tex]H^{\prime}[/tex]?

A. [tex](7, -8)[/tex]
B. [tex](-7, 6)[/tex]
C. [tex](3, -12)[/tex]
D. [tex](2, 1)[/tex]



Answer :

To find the coordinates of [tex]\( H' \)[/tex] after translating point [tex]\( H \)[/tex] according to the given rule, we follow a step-by-step process.

Step 1: Understand the translation rule
The translation rule [tex]\( T_{-5, 9}(x, y) \)[/tex] means that we need to move each point by adding [tex]\(-5\)[/tex] to the [tex]\( x \)[/tex]-coordinate and adding [tex]\( 9 \)[/tex] to the [tex]\( y \)[/tex]-coordinate.

Step 2: Identify the coordinates of the pre-image
The coordinates of point [tex]\( H \)[/tex] are given as [tex]\((-2, -3)\)[/tex]. This means:
- [tex]\( x_{\text{pre}} = -2 \)[/tex]
- [tex]\( y_{\text{pre}} = -3 \)[/tex]

Step 3: Apply the translation to the [tex]\( x \)[/tex]-coordinate
To obtain the new [tex]\( x \)[/tex]-coordinate, we add [tex]\(-5\)[/tex] to the original [tex]\( x \)[/tex]-coordinate:
[tex]\[ x_{\text{post}} = x_{\text{pre}} + (-5) = -2 + (-5) = -7 \][/tex]

Step 4: Apply the translation to the [tex]\( y \)[/tex]-coordinate
To obtain the new [tex]\( y \)[/tex]-coordinate, we add [tex]\( 9 \)[/tex] to the original [tex]\( y \)[/tex]-coordinate:
[tex]\[ y_{\text{post}} = y_{\text{pre}} + 9 = -3 + 9 = 6 \][/tex]

Step 5: Write the coordinates of [tex]\( H' \)[/tex]
After the translation, the coordinates of [tex]\( H' \)[/tex] are:
[tex]\[ (-7, 6) \][/tex]

Thus, the correct answer is:
[tex]\[ (-7, 6) \][/tex]