Rewrite the expression and solve for [tex]\( x \)[/tex]:
[tex]\[
\begin{array}{l}
\sqrt{5} - \sqrt{10} - \sqrt{15} + \sqrt{6} \\
10 - \sqrt{15} + \sqrt{6} = \sqrt{x}
\end{array}
\][/tex]

Square both sides.



Answer :

Certainly! Let's break down the given expressions step by step and find the required value of [tex]\(x\)[/tex].

### Step-by-Step Solution

1. Evaluate the Given Terms:
- [tex]\( \sqrt{5} \approx 2.2361 \)[/tex]
- [tex]\( \sqrt{10} \approx 3.1623 \)[/tex]
- [tex]\( \sqrt{15} \approx 3.8730 \)[/tex]
- [tex]\( \sqrt{6} \approx 2.4495 \)[/tex]

2. Calculate the First Expression:
- Let's simplify the expression: [tex]\( \sqrt{5} - \sqrt{10} - \sqrt{15} + \sqrt{6} \)[/tex]
- Substituting the values, we get:
[tex]\[ \sqrt{5} - \sqrt{10} - \sqrt{15} + \sqrt{6} \approx 2.2361 - 3.1623 - 3.8730 + 2.4495 \][/tex]
- Performing the arithmetic, we obtain:
[tex]\[ 2.2361 - 3.1623 - 3.8730 + 2.4495 \approx -2.3497 \][/tex]

3. Check the Second Expression Equals [tex]\(\sqrt{x}\)[/tex]:
- According to the given condition:
[tex]\[ 10 - \sqrt{15} + \sqrt{6} = \sqrt{x} \][/tex]
- Substituting the values, we get:
[tex]\[ 10 - 3.8730 + 2.4495 \approx 10 - 3.8730 + 2.4495 \approx 8.5765 \][/tex]

4. Square Both Sides to Find [tex]\(x\)[/tex]:
- Given that [tex]\( 10 - \sqrt{15} + \sqrt{6} = \sqrt{x} \)[/tex], we square both sides to find [tex]\(x\)[/tex]:
[tex]\[ (10 - \sqrt{15} + \sqrt{6})^2 = x \][/tex]
- Calculating the right side:
[tex]\[ (8.5765)^2 \approx 73.5565 \][/tex]

Thus, the value of [tex]\(x\)[/tex] is approximately [tex]\(73.5565\)[/tex].