[tex]$A$[/tex], [tex]$Q$[/tex], [tex]$R$[/tex], and [tex]$S$[/tex] shared a sum of money in the ratio [tex]$3: 4: 6: 7$[/tex]. If [tex]$S$[/tex] receives \[tex]$6,000 more than $[/tex]Q[tex]$, calculate the total amount of money shared.

A. \$[/tex]3,000
B. \[tex]$4,000
C. \$[/tex]6,000
D. \[tex]$8,000
E. \$[/tex]2,000



Answer :

To find the amount of money shared by [tex]\(A\)[/tex], [tex]\(Q\)[/tex], [tex]\(R\)[/tex], and [tex]\(S\)[/tex], we need to follow these steps:

1. Understand the given ratios and the difference in amounts:
- The ratios given are [tex]\(3: 4: 6: 7\)[/tex].
- [tex]\(S\)[/tex] receives [tex]$6,000 more than \(Q\). 2. Set up the ratio equations: - Let the common ratio be \(x\). - Therefore, the amounts each person receives can be expressed in terms of \(x\) as follows: - \(A = 3x\) - \(Q = 4x\) - \(R = 6x\) - \(S = 7x\) 3. Utilize the given information about \(S\) and \(Q\): - \(S\) receives $[/tex]6,000 more than [tex]\(Q\)[/tex], so:
[tex]\[ S - Q = 6,000 \][/tex]
Substituting the expressions for [tex]\(S\)[/tex] and [tex]\(Q\)[/tex]:
[tex]\[ 7x - 4x = 6,000 \][/tex]
Simplifying gives:
[tex]\[ 3x = 6,000 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{6,000}{3} = 2,000 \][/tex]

4. Calculate the specific amounts for each person:
- Substitute [tex]\(x = 2,000\)[/tex] back into the expressions for each person's amount:
- [tex]\(A = 3x = 3 \times 2,000 = 6,000\)[/tex]
- [tex]\(Q = 4x = 4 \times 2,000 = 8,000\)[/tex]
- [tex]\(R = 6x = 6 \times 2,000 = 12,000\)[/tex]
- [tex]\(S = 7x = 7 \times 2,000 = 14,000\)[/tex]

5. Sum the amounts to find the total money shared:
[tex]\[ \text{Total amount} = A + Q + R + S = 6,000 + 8,000 + 12,000 + 14,000 = 40,000 \][/tex]

So, the total amount of money shared is [tex]\( \$40,000 \)[/tex].

Therefore, the answer to the question is: [tex]\( \boxed{40,000} \)[/tex].