Verify whether the cones are the same:
(i) [tex]x^2 - 2x \quad x = 2, 0[/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Express 3x^2 − 27 in the form a(x + b)^2 + c and hence find the maximum value of 3x^2 − 27.
-----

Response:
Express [tex]3x^2 - 27[/tex] in the form [tex]a(x + b)^2 + c[/tex] and hence find the maximum value of [tex]3x^2 - 27[/tex].



Answer :

Sure! Let's verify the values of the function [tex]\( x^2 - 2x \)[/tex] at [tex]\( x = 2 \)[/tex] and [tex]\( x = 0 \)[/tex].

### Step-by-Step Solution

1. Define the Function:
[tex]\[ f(x) = x^2 - 2x \][/tex]

2. Calculate the Function Value at [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = 2^2 - 2 \cdot 2 \][/tex]
- Perform the calculations:
[tex]\[ = 4 - 4 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]

3. Calculate the Function Value at [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 0^2 - 2 \cdot 0 \][/tex]
- Perform the calculations:
[tex]\[ = 0 - 0 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]

Therefore, the values of the function [tex]\( x^2 - 2x \)[/tex] at [tex]\( x = 2 \)[/tex] and [tex]\( x = 0 \)[/tex] are both:
[tex]\[ f(2) = 0 \][/tex]
[tex]\[ f(0) = 0 \][/tex]

So, the verified values are [tex]\( (0, 0) \)[/tex].