Answer :
Sure! Let's verify the values of the function [tex]\( x^2 - 2x \)[/tex] at [tex]\( x = 2 \)[/tex] and [tex]\( x = 0 \)[/tex].
### Step-by-Step Solution
1. Define the Function:
[tex]\[ f(x) = x^2 - 2x \][/tex]
2. Calculate the Function Value at [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = 2^2 - 2 \cdot 2 \][/tex]
- Perform the calculations:
[tex]\[ = 4 - 4 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]
3. Calculate the Function Value at [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 0^2 - 2 \cdot 0 \][/tex]
- Perform the calculations:
[tex]\[ = 0 - 0 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]
Therefore, the values of the function [tex]\( x^2 - 2x \)[/tex] at [tex]\( x = 2 \)[/tex] and [tex]\( x = 0 \)[/tex] are both:
[tex]\[ f(2) = 0 \][/tex]
[tex]\[ f(0) = 0 \][/tex]
So, the verified values are [tex]\( (0, 0) \)[/tex].
### Step-by-Step Solution
1. Define the Function:
[tex]\[ f(x) = x^2 - 2x \][/tex]
2. Calculate the Function Value at [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = 2^2 - 2 \cdot 2 \][/tex]
- Perform the calculations:
[tex]\[ = 4 - 4 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]
3. Calculate the Function Value at [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 0^2 - 2 \cdot 0 \][/tex]
- Perform the calculations:
[tex]\[ = 0 - 0 \][/tex]
- Simplify the result:
[tex]\[ = 0 \][/tex]
Therefore, the values of the function [tex]\( x^2 - 2x \)[/tex] at [tex]\( x = 2 \)[/tex] and [tex]\( x = 0 \)[/tex] are both:
[tex]\[ f(2) = 0 \][/tex]
[tex]\[ f(0) = 0 \][/tex]
So, the verified values are [tex]\( (0, 0) \)[/tex].