Answer :

Sure, let's solve the system of linear equations step-by-step to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

The system of equations is:
[tex]\[ \begin{cases} 5x - 4y = 6 \quad \text{(Equation 1)} \\ 2x - 5y = 3 \quad \text{(Equation 2)} \end{cases} \][/tex]

### Step 1: Express one variable in terms of the other

Let's solve Equation 1 for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:

[tex]\[ 5x - 4y = 6 \][/tex]

[tex]\[ 5x = 6 + 4y \][/tex]

[tex]\[ x = \frac{6 + 4y}{5} \][/tex]

### Step 2: Substitute [tex]\(x\)[/tex] into the second equation

Now, we substitute [tex]\(x\)[/tex] from Equation 1 into Equation 2:

[tex]\[ 2 \left(\frac{6 + 4y}{5}\right) - 5y = 3 \][/tex]

### Step 3: Clear the fraction by multiplying through by 5

[tex]\[ 2 \cdot (6 + 4y) - 5 \cdot 5y = 3 \cdot 5 \][/tex]

[tex]\[ 12 + 8y - 25y = 15 \][/tex]

### Step 4: Combine like terms

[tex]\[ 12 - 17y = 15 \][/tex]

### Step 5: Isolate [tex]\(y\)[/tex]

Subtract 12 from both sides:

[tex]\[ -17y = 3 \][/tex]

Divide by -17:

[tex]\[ y = \frac{3}{-17} \][/tex]

[tex]\[ y = -\frac{3}{17} \][/tex]

### Step 6: Substitute [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]

Using the [tex]\(y\)[/tex] value in the expression for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{6 + 4\left(-\frac{3}{17}\right)}{5} \][/tex]

This simplifies to:

[tex]\[ x = \frac{6 - \frac{12}{17}}{5} \][/tex]

Convert 6 to a fraction with a denominator of 17:

[tex]\[ 6 = \frac{102}{17} \][/tex]

So,

[tex]\[ x = \frac{\frac{102}{17} - \frac{12}{17}}{5} \][/tex]

[tex]\[ x = \frac{\frac{90}{17}}{5} \][/tex]

Simplify the division:

[tex]\[ x = \frac{90}{17} \cdot \frac{1}{5} \][/tex]

[tex]\[ x = \frac{90}{85} \][/tex]

Simplify the fraction:

[tex]\[ x = \frac{18}{17} \][/tex]

### Final Answer

Thus, the solution to the system of equations is:

[tex]\[ x = \frac{18}{17}, \quad y = -\frac{3}{17} \][/tex]