Section 1 - Differentiation

Q1. A curve has the equation [tex]y = 2x^2 - 8x\sqrt{x} + 8x + 1[/tex] for [tex]x \geq 0[/tex].

i. Find the value of [tex]\frac{dy}{dx}[/tex].

ii. Find the coordinates of all the stationary points.

iii. Determine the nature of each stationary point.



Answer :

Let's solve this problem step by step.

### Part 1: Finding the Derivative
Given the function:
[tex]\[ y = 2x^2 - 8x\sqrt{x} + 8x + 1 \][/tex]

To find the derivative [tex]\(\frac{dy}{dx}\)[/tex]:

1. Rewrite [tex]\( \sqrt{x} \)[/tex] as [tex]\( x^{1/2} \)[/tex].
2. Differentiate each term with respect to [tex]\( x \)[/tex].

[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2) - \frac{d}{dx}(8x^{3/2}) + \frac{d}{dx}(8x) + \frac{d}{dx}(1) \][/tex]

Performing the differentiation:

[tex]\[ \frac{d}{dx}(2x^2) = 4x \][/tex]

[tex]\[ \frac{d}{dx}(8x^{3/2}) = 8 \cdot \frac{3}{2} x^{1/2} = 12x^{1/2} \][/tex]

[tex]\[ \frac{d}{dx}(8x) = 8 \][/tex]

[tex]\[ \frac{d}{dx}(1) = 0 \][/tex]

So, the derivative is:

[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]

### Part 2: Finding the Stationary Points
Stationary points occur where [tex]\(\frac{dy}{dx} = 0\)[/tex].

Setting the derivative equal to zero:
[tex]\[ 4x - 12\sqrt{x} + 8 = 0 \][/tex]

To solve this equation, let [tex]\( u = \sqrt{x} \)[/tex]. Then [tex]\( x = u^2 \)[/tex].

Substituting [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]

This is a quadratic equation in [tex]\( u \)[/tex]:

[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]

Dividing by 4 to simplify:

[tex]\[ u^2 - 3u + 2 = 0 \][/tex]

Factoring the quadratic:

[tex]\[ (u - 1)(u - 2) = 0 \][/tex]

Thus, [tex]\( u = 1 \)[/tex] or [tex]\( u = 2 \)[/tex]. Converting back to [tex]\( x \)[/tex]:

[tex]\[ \sqrt{x} = 1 \implies x = 1 \][/tex]
[tex]\[ \sqrt{x} = 2 \implies x = 4 \][/tex]

So, the stationary points are at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex].

To find the corresponding [tex]\( y \)[/tex] values:

For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2(1)^2 - 8(1)\sqrt{1} + 8(1) + 1 = 2 - 8 + 8 + 1 = 3 \][/tex]

For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2(4)^2 - 8(4)\sqrt{4} + 8(4) + 1 = 2(16) - 8(4)(2) + 32 + 1 = 32 - 64 + 32 + 1 = 1 \][/tex]

Thus, the stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]

### Part 3: Determining the Nature of Each Stationary Point
To determine the nature of each stationary point, we use the second derivative test. Let's find the second derivative.

[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x - 12\sqrt{x} + 8) \][/tex]

Differentiating term by term:

[tex]\[ \frac{d}{dx}(4x) = 4 \][/tex]

[tex]\[ \frac{d}{dx}(-12\sqrt{x}) = -12 \cdot \frac{1}{2} x^{-1/2} = -6x^{-1/2} \][/tex]

[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]

So, the second derivative is:

[tex]\[ \frac{d^2y}{dx^2} = 4 - 6x^{-1/2} \][/tex]

We now evaluate the second derivative at the stationary points.

For [tex]\( x = 1 \)[/tex]:

[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=1} = 4 - 6(1)^{-1/2} = 4 - 6 = -2 \][/tex]

Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 1 \)[/tex] is negative, this point is a local maximum.

For [tex]\( x = 4 \)[/tex]:

[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=4} = 4 - 6(4)^{-1/2} = 4 - 3 = 1 \][/tex]

Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 4 \)[/tex] is positive, this point is a local minimum.

### Summary
1. The derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]

2. The stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]

3. The nature of these points are:
[tex]\[ (1, 3) \quad \text{is a local maximum} \][/tex]
[tex]\[ (4, 1) \quad \text{is a local minimum} \][/tex]