2. Work out the following. Give your answers in their lowest terms.

a) [tex] \frac{3}{5} \times \frac{1}{6} [/tex]

b) [tex] 3 \frac{3}{4} \times \frac{2}{5} [/tex]

c) [tex] \frac{2}{5} \div 3 [/tex]

d) [tex] 4 \frac{4}{9} \div 6 [/tex]



Answer :

Certainly! Let's go through each part of the question and work them out step-by-step.

### Part (a)

[tex]\[ \frac{3}{5} \times \frac{1}{6} \][/tex]

To multiply two fractions, you multiply the numerators together and the denominators together:

Numerator: [tex]\(3 \times 1 = 3\)[/tex]

Denominator: [tex]\(5 \times 6 = 30\)[/tex]

So, the product is:

[tex]\[ \frac{3}{30} \][/tex]

Now, simplify this fraction by finding the greatest common divisor (GCD) of 3 and 30, which is 3:

[tex]\[ \frac{3 \div 3}{30 \div 3} = \frac{1}{10} \][/tex]

Thus, the answer in its lowest terms is:

[tex]\[ \frac{1}{10} \][/tex]

### Part (b)

[tex]\[ 3 \frac{3}{4} \times \frac{2}{5} \][/tex]

First, convert the mixed number [tex]\(3 \frac{3}{4}\)[/tex] to an improper fraction:

[tex]\[ 3 \frac{3}{4} = \frac{3 \times 4 + 3}{4} = \frac{12 + 3}{4} = \frac{15}{4} \][/tex]

Now multiply it by [tex]\(\frac{2}{5}\)[/tex]:

Numerator: [tex]\(15 \times 2 = 30\)[/tex]

Denominator: [tex]\(4 \times 5 = 20\)[/tex]

So, the product is:

[tex]\[ \frac{30}{20} \][/tex]

Simplify the fraction by finding the GCD of 30 and 20, which is 10:

[tex]\[ \frac{30 \div 10}{20 \div 10} = \frac{3}{2} \][/tex]

Thus, the answer in its lowest terms is:

[tex]\[ \frac{3}{2} \][/tex]

### Part (c)

[tex]\[ \frac{2}{5} \div 3 \][/tex]

Dividing by a whole number is equivalent to multiplying by its reciprocal. The reciprocal of 3 is [tex]\(\frac{1}{3}\)[/tex]:

[tex]\[ \frac{2}{5} \times \frac{1}{3} \][/tex]

Numerator: [tex]\(2 \times 1 = 2\)[/tex]

Denominator: [tex]\(5 \times 3 = 15\)[/tex]

So, the product is:

[tex]\[ \frac{2}{15} \][/tex]

Thus, the answer in its lowest terms is:

[tex]\[ \frac{2}{15} \][/tex]

### Part (d)

[tex]\[ 4 \frac{4}{9} \div 6 \][/tex]

First, convert the mixed number [tex]\(4 \frac{4}{9}\)[/tex] to an improper fraction:

[tex]\[ 4 \frac{4}{9} = \frac{4 \times 9 + 4}{9} = \frac{36 + 4}{9} = \frac{40}{9} \][/tex]

Now divide it by 6. Dividing by 6 is the same as multiplying by the reciprocal of 6, which is [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \frac{40}{9} \times \frac{1}{6} \][/tex]

Numerator: [tex]\(40 \times 1 = 40\)[/tex]

Denominator: [tex]\(9 \times 6 = 54\)[/tex]

So, the product is:

[tex]\[ \frac{40}{54} \][/tex]

Simplify the fraction by finding the GCD of 40 and 54, which is 2:

[tex]\[ \frac{40 \div 2}{54 \div 2} = \frac{20}{27} \][/tex]

Thus, the answer in its lowest terms is:

[tex]\[ \frac{20}{27} \][/tex]

Hence, the final answers are:
[tex]\[ \text{a)} \frac{1}{10} \quad \text{b)} \frac{3}{2} \quad \text{c)} \frac{2}{15} \quad \text{d)} \frac{20}{27} \][/tex]