Solve for the unknown natural number [tex]\( x \)[/tex] in each inequality below:

a. [tex]\( 19 + x \leq 43 \)[/tex]

b. [tex]\( 28 - x \geq 11 \)[/tex]

c. [tex]\( x + 38 - 18 \ \textless \ 83 \)[/tex]

d. [tex]\( 41 + x - 39 \ \textless \ 83 - 77 \)[/tex]



Answer :

Of course, let's solve each inequality step-by-step.

### a) [tex]\(19 + x \leq 43\)[/tex]

1. Subtract 19 from both sides of the inequality to isolate [tex]\(x\)[/tex]:
[tex]\[ 19 + x - 19 \leq 43 - 19 \][/tex]
2. Simplify the equation:
[tex]\[ x \leq 24 \][/tex]

So, [tex]\(x \leq 24\)[/tex].

### b) [tex]\(28 - x \geq 11\)[/tex]

1. Subtract 28 from both sides of the inequality:
[tex]\[ 28 - x - 28 \geq 11 - 28 \][/tex]
2. Simplify the equation:
[tex]\[ -x \geq -17 \][/tex]
3. Multiply both sides by -1 (remember to flip the inequality sign when multiplying by a negative number):
[tex]\[ x \leq 17 \][/tex]

So, [tex]\(x \leq 17\)[/tex].

### c) [tex]\(x + 38 - 18 < 83\)[/tex]

1. Simplify the left side of the inequality first:
[tex]\[ x + 20 < 83 \][/tex]
2. Subtract 20 from both sides of the inequality:
[tex]\[ x + 20 - 20 < 83 - 20 \][/tex]
3. Simplify the equation:
[tex]\[ x < 63 \][/tex]

So, [tex]\(x < 63\)[/tex].

### d) [tex]\(41 + x - 39 < 83 - 77\)[/tex]

1. Simplify both sides of the inequality:
[tex]\[ (41 - 39) + x < (83 - 77) \][/tex]
[tex]\[ 2 + x < 6 \][/tex]
2. Subtract 2 from both sides of the inequality to isolate [tex]\(x\)[/tex]:
[tex]\[ 2 + x - 2 < 6 - 2 \][/tex]
3. Simplify the equation:
[tex]\[ x < 4 \][/tex]

So, [tex]\(x < 4\)[/tex].

### Summary of Results

a) [tex]\(x \leq 24\)[/tex]

b) [tex]\(x \leq 17\)[/tex]

c) [tex]\(x < 63\)[/tex]

d) [tex]\(x < 4\)[/tex]