Match each inequality on the left with its correct solution on the right.
Some answer choices on the right will be used more than once.

[tex]\[
\begin{array}{l}
4x + 1 \ \textgreater \ 9 \\
-6x - 2 \ \textgreater \ 10 \\
|-3x| \ \textless \ 6 \\
|3x| + 5 \ \textless \ 4 \\
|x + 2| \ \textgreater \ 1
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
A. -2 \ \textless \ x \ \textless \ 2 \\
B. x \ \textgreater \ -1 \text{ or } x \ \textless \ -3 \\
C. \text{No solution}
\end{array}
\][/tex]



Answer :

Sure! Let's match each inequality with its correct solution step by step.

1. Inequality: [tex]\(4x + 1 > 9\)[/tex] and [tex]\(-6x - 2 > 10\)[/tex]
- To solve [tex]\(4x + 1 > 9\)[/tex]:
[tex]\[ 4x + 1 > 9 \][/tex]
[tex]\[ 4x > 8 \][/tex]
[tex]\[ x > 2 \][/tex]
- To solve [tex]\(-6x - 2 > 10\)[/tex]:
[tex]\[ -6x - 2 > 10 \][/tex]
[tex]\[ -6x > 12 \][/tex]
[tex]\[ x < -2 \][/tex]
- Since [tex]\( x > 2 \)[/tex] and [tex]\( x < -2 \)[/tex] cannot be true simultaneously, there is no solution.

Solution: no solution

2. Inequality: [tex]\(|-3x| < 6\)[/tex]
- Since [tex]\(|-3x|\)[/tex] is the absolute value of [tex]\(-3x\)[/tex], it means:
[tex]\[ |-3x| < 6 \][/tex]
- This can be split into two parts:
[tex]\[ -3x < 6 \][/tex]
[tex]\[ x > -2 \][/tex]
[tex]\[ 3x < 6 \][/tex]
[tex]\[ x < 2 \][/tex]
- Combining these two parts, we get:
[tex]\[ -2 < x < 2 \][/tex]

Solution: [tex]\(-2 < x < 2\)[/tex]

3. Inequality: [tex]\(|3x| + 5 < 4\)[/tex]
- To solve [tex]\(|3x| + 5 < 4\)[/tex], we first isolate the absolute value:
[tex]\[ |3x| + 5 < 4 \][/tex]
[tex]\[ |3x| < -1 \][/tex]
- Since an absolute value cannot be negative, there is no solution.

Solution: no solution

4. Inequality: [tex]\(|x + 2| > 1\)[/tex]
- Since [tex]\(|x+2|\)[/tex] is the absolute value, it gives us two cases:
[tex]\[ x+2 > 1 \text{ or } x+2 < -1 \][/tex]
- For [tex]\( x + 2 > 1 \)[/tex]:
[tex]\[ x > -1 \][/tex]
- For [tex]\( x + 2 < -1 \)[/tex]:
[tex]\[ x < -3 \][/tex]
- Combining these two parts, we get:
[tex]\[ x > -1 \text{ or } x < -3 \][/tex]

Solution: [tex]\(x > -1 \text{ or } x < -3\)[/tex]

Therefore, the matches are:

- [tex]\(4x + 1 > 9\)[/tex] and [tex]\(-6x - 2 > 10\)[/tex] → no solution
- [tex]\(|-3x| < 6\)[/tex] → [tex]\(-2 < x < 2\)[/tex]
- [tex]\(|3x| + 5 < 4\)[/tex] → no solution
- [tex]\(|x + 2| > 1\)[/tex] → [tex]\(x > -1 \text{ or } x < -3\)[/tex]