Answer :
Let's proceed step-by-step with the conversions.
### a) [tex]$256 \, m$[/tex]
1. Convert meters to centimeters: \\
[tex]\( 1 \, m = 100 \, cm \)[/tex] \\
Therefore, [tex]\( 256 \, m = 256 \times 100 = 25600 \, cm \)[/tex].
2. Convert centimeters to millimeters: \\
[tex]\( 1 \, cm = 10 \, mm \)[/tex] \\
Therefore, [tex]\( 25600 \, cm = 25600 \times 10 = 256000 \, mm \)[/tex].
Summary:
[tex]$ 256 \, m = 25600 \, cm = 256000 \, mm $[/tex]
### b) [tex]$3446 \, mg$[/tex]
1. Convert milligrams to grams: \\
[tex]\( 1000 \, mg = 1 \, g \)[/tex] \\
Therefore, [tex]\( 3446 \, mg = \frac{3446}{1000} = 3.446 \, g \)[/tex].
2. Convert grams to kilograms: \\
[tex]\( 1000 \, g = 1 \, kg \)[/tex] \\
Therefore, [tex]\( 3.446 \, g = \frac{3.446}{1000} = 0.003446 \, kg \)[/tex].
Summary:
[tex]$ 3446 \, mg = 3.446 \, g = 0.003446 \, kg $[/tex]
### c) [tex]$598 \, kL$[/tex]
1. Convert kiloliters to liters: \\
[tex]\( 1 \, kL = 1000 \, L \)[/tex] \\
Therefore, [tex]\( 598 \, kL = 598 \times 1000 = 598000 \, L \)[/tex].
2. Convert liters to milliliters: \\
[tex]\( 1 \, L = 1000 \, mL \)[/tex] \\
Therefore, [tex]\( 598000 \, L = 598000 \times 1000 = 598000000 \, mL \)[/tex].
Summary:
[tex]$ 598 \, kL = 598000 \, L = 598000000 \, mL $[/tex]
### d) [tex]$118.75 \, km$[/tex]
1. Separate into kilometers and meters: \\
The integer part remains in kilometers, and the decimal part is converted to meters. \\
[tex]\( 118 \, km \)[/tex] is the integer part \\
To find the meters: \\
[tex]\( 0.75 \, km = 0.75 \times 1000 = 750 \, m \)[/tex]
Summary:
[tex]$ 118.75 \, km = 118 \, km + 750 \, m $[/tex]
### e) [tex]$6755 \, g$[/tex]
1. Convert grams to kilograms: \\
[tex]\( 1000 \, g = 1 \, kg \)[/tex] \\
Therefore, [tex]\( 6755 \, g = \frac{6755}{1000} = 6.755 \, kg \)[/tex].
2. Separate kilograms and grams: \\
[tex]\( 6 \, kg \)[/tex] is the integer part \\
To find the gram remainder: \\
[tex]\( 6.755 \, kg = 6 \, kg \)[/tex] and the remainder: \\
[tex]\( 0.755 \, kg = 0.755 \times 1000 = 755 \, g \)[/tex]
Summary:
[tex]$ 6755 \, g = 6.755 \, kg = 6 \, kg + 755 \, g $[/tex]
### f) [tex]$28.7 \, kg$[/tex]
1. Separate kilograms and grams: \\
The integer part remains in kilograms, and the decimal part is converted to grams. \\
[tex]\( 28 \, kg \)[/tex] is the integer part \\
To find the gram remainder: \\
[tex]\( 0.7 \, kg = 0.7 \times 1000 = 700 \, g \)[/tex]
Summary:
[tex]$ 28.7 \, kg = 28 \, kg + 700 \, g $[/tex]
These are the final answers for each conversion problem:
- [tex]\( 256 \, m = 25600 \, cm = 256000 \, mm \)[/tex]
- [tex]\( 3446 \, mg = 3.446 \, g = 0.003446 \, kg \)[/tex]
- [tex]\( 598 \, kL = 598000 \, L = 598000000 \, mL \)[/tex]
- [tex]\( 118.75 \, km = 118 \, km + 750 \, m \)[/tex]
- [tex]\( 6755 \, g = 6.755 \, kg = 6 \, kg + 755 \, g \)[/tex]
- [tex]\( 28.7 \, kg = 28 \, kg + 700 \, g \)[/tex]
### a) [tex]$256 \, m$[/tex]
1. Convert meters to centimeters: \\
[tex]\( 1 \, m = 100 \, cm \)[/tex] \\
Therefore, [tex]\( 256 \, m = 256 \times 100 = 25600 \, cm \)[/tex].
2. Convert centimeters to millimeters: \\
[tex]\( 1 \, cm = 10 \, mm \)[/tex] \\
Therefore, [tex]\( 25600 \, cm = 25600 \times 10 = 256000 \, mm \)[/tex].
Summary:
[tex]$ 256 \, m = 25600 \, cm = 256000 \, mm $[/tex]
### b) [tex]$3446 \, mg$[/tex]
1. Convert milligrams to grams: \\
[tex]\( 1000 \, mg = 1 \, g \)[/tex] \\
Therefore, [tex]\( 3446 \, mg = \frac{3446}{1000} = 3.446 \, g \)[/tex].
2. Convert grams to kilograms: \\
[tex]\( 1000 \, g = 1 \, kg \)[/tex] \\
Therefore, [tex]\( 3.446 \, g = \frac{3.446}{1000} = 0.003446 \, kg \)[/tex].
Summary:
[tex]$ 3446 \, mg = 3.446 \, g = 0.003446 \, kg $[/tex]
### c) [tex]$598 \, kL$[/tex]
1. Convert kiloliters to liters: \\
[tex]\( 1 \, kL = 1000 \, L \)[/tex] \\
Therefore, [tex]\( 598 \, kL = 598 \times 1000 = 598000 \, L \)[/tex].
2. Convert liters to milliliters: \\
[tex]\( 1 \, L = 1000 \, mL \)[/tex] \\
Therefore, [tex]\( 598000 \, L = 598000 \times 1000 = 598000000 \, mL \)[/tex].
Summary:
[tex]$ 598 \, kL = 598000 \, L = 598000000 \, mL $[/tex]
### d) [tex]$118.75 \, km$[/tex]
1. Separate into kilometers and meters: \\
The integer part remains in kilometers, and the decimal part is converted to meters. \\
[tex]\( 118 \, km \)[/tex] is the integer part \\
To find the meters: \\
[tex]\( 0.75 \, km = 0.75 \times 1000 = 750 \, m \)[/tex]
Summary:
[tex]$ 118.75 \, km = 118 \, km + 750 \, m $[/tex]
### e) [tex]$6755 \, g$[/tex]
1. Convert grams to kilograms: \\
[tex]\( 1000 \, g = 1 \, kg \)[/tex] \\
Therefore, [tex]\( 6755 \, g = \frac{6755}{1000} = 6.755 \, kg \)[/tex].
2. Separate kilograms and grams: \\
[tex]\( 6 \, kg \)[/tex] is the integer part \\
To find the gram remainder: \\
[tex]\( 6.755 \, kg = 6 \, kg \)[/tex] and the remainder: \\
[tex]\( 0.755 \, kg = 0.755 \times 1000 = 755 \, g \)[/tex]
Summary:
[tex]$ 6755 \, g = 6.755 \, kg = 6 \, kg + 755 \, g $[/tex]
### f) [tex]$28.7 \, kg$[/tex]
1. Separate kilograms and grams: \\
The integer part remains in kilograms, and the decimal part is converted to grams. \\
[tex]\( 28 \, kg \)[/tex] is the integer part \\
To find the gram remainder: \\
[tex]\( 0.7 \, kg = 0.7 \times 1000 = 700 \, g \)[/tex]
Summary:
[tex]$ 28.7 \, kg = 28 \, kg + 700 \, g $[/tex]
These are the final answers for each conversion problem:
- [tex]\( 256 \, m = 25600 \, cm = 256000 \, mm \)[/tex]
- [tex]\( 3446 \, mg = 3.446 \, g = 0.003446 \, kg \)[/tex]
- [tex]\( 598 \, kL = 598000 \, L = 598000000 \, mL \)[/tex]
- [tex]\( 118.75 \, km = 118 \, km + 750 \, m \)[/tex]
- [tex]\( 6755 \, g = 6.755 \, kg = 6 \, kg + 755 \, g \)[/tex]
- [tex]\( 28.7 \, kg = 28 \, kg + 700 \, g \)[/tex]