Answer :
Sure! Let's solve this step-by-step:
1. Identify the given values:
- Mass of the block: 30 grams
- Dimensions of the block: 2 cm (length), 3 cm (width), and 4 cm (height)
2. Calculate the volume of the block:
- The volume ([tex]\( V \)[/tex]) of a rectangular block is found using the formula:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
- Plugging in the given dimensions:
[tex]\[ V = 2 \, \text{cm} \times 3 \, \text{cm} \times 4 \, \text{cm} \][/tex]
- This gives:
[tex]\[ V = 24 \, \text{cm}^3 \][/tex]
3. Calculate the density of the block:
- The density ([tex]\( \rho \)[/tex]) is found using the formula:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
- Plugging in the given mass and the volume we just calculated:
[tex]\[ \rho = \frac{30 \, \text{g}}{24 \, \text{cm}^3} \][/tex]
- This gives:
[tex]\[ \rho = 1.25 \, \text{g/cm}^3 \][/tex]
So, the volume of the block is [tex]\( 24 \, \text{cm}^3 \)[/tex] and its density is [tex]\( 1.25 \, \text{g/cm}^3 \)[/tex].
1. Identify the given values:
- Mass of the block: 30 grams
- Dimensions of the block: 2 cm (length), 3 cm (width), and 4 cm (height)
2. Calculate the volume of the block:
- The volume ([tex]\( V \)[/tex]) of a rectangular block is found using the formula:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
- Plugging in the given dimensions:
[tex]\[ V = 2 \, \text{cm} \times 3 \, \text{cm} \times 4 \, \text{cm} \][/tex]
- This gives:
[tex]\[ V = 24 \, \text{cm}^3 \][/tex]
3. Calculate the density of the block:
- The density ([tex]\( \rho \)[/tex]) is found using the formula:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
- Plugging in the given mass and the volume we just calculated:
[tex]\[ \rho = \frac{30 \, \text{g}}{24 \, \text{cm}^3} \][/tex]
- This gives:
[tex]\[ \rho = 1.25 \, \text{g/cm}^3 \][/tex]
So, the volume of the block is [tex]\( 24 \, \text{cm}^3 \)[/tex] and its density is [tex]\( 1.25 \, \text{g/cm}^3 \)[/tex].