Certainly! Let's go through the given formula step by step:
We are asked to evaluate the formula:
[tex]\[ V = \frac{B h}{3} \][/tex]
with the given values:
[tex]\[ B = 4 \, \text{cm}^2 \][/tex]
[tex]\[ h = 6 \, \text{cm} \][/tex]
Step 1: Multiply the base area (B) by the height (h)
[tex]\[ B \times h = 4 \, \text{cm}^2 \times 6 \, \text{cm} \][/tex]
First, calculate the product:
[tex]\[ 4 \times 6 = 24 \][/tex]
Therefore,
[tex]\[ B \times h = 24 \, \text{cm}^3 \][/tex]
Step 2: Divide the result by 3 to find the volume (V)
[tex]\[ V = \frac{24 \, \text{cm}^3}{3} \][/tex]
Now, perform the division:
[tex]\[ \frac{24}{3} = 8 \][/tex]
Thus, the volume is:
[tex]\[ V = 8 \, \text{cm}^3 \][/tex]
So, the volume [tex]\( V \)[/tex] evaluated with the given values [tex]\( B = 4 \, \text{cm}^2 \)[/tex] and [tex]\( h = 6 \, \text{cm} \)[/tex] is:
[tex]\[ V = 8 \, \text{cm}^3 \][/tex]