For what value of [tex]$x$[/tex] is [tex]$\sin (x)=\cos \left(32^{\circ}\right)$[/tex], where [tex][tex]$0^{\circ}\ \textless \ x\ \textless \ 90^{\circ}$[/tex][/tex]?

A. [tex]$58^{\circ}$[/tex]
B. [tex]$64^{\circ}$[/tex]
C. [tex][tex]$32^{\circ}$[/tex][/tex]
D. [tex]$13^{\circ}$[/tex]



Answer :

To solve for the value of [tex]\( x \)[/tex] such that [tex]\(\sin(x) = \cos(32^\circ)\)[/tex], where [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can utilize a fundamental trigonometric identity. This identity states that the sine of an angle is equal to the cosine of its complementary angle, i.e.,

[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]

Given the equation:

[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]

We can set up an equation using the identity above:

[tex]\[ \sin(x) = \cos(32^\circ) = \cos(90^\circ - (90^\circ - 32^\circ)) = \cos(58^\circ) \][/tex]

Thus, to satisfy the given equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex], [tex]\( x \)[/tex] must be the complement of [tex]\( 32^\circ \)[/tex]. This means we set the complement of [tex]\( x \)[/tex] to [tex]\( 32^\circ \)[/tex]:

[tex]\[ x = 90^\circ - 32^\circ = 58^\circ \][/tex]

Therefore, the correct value of [tex]\( x \)[/tex] is:

[tex]\[ \boxed{58^\circ} \][/tex]