Answer :

Certainly! Let's solve the given problem step-by-step:

We need to simplify the expression:
[tex]\[ \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \][/tex]

### Step 1: Make the Denominators the Same

First, we need to have a common denominator for all the fractions. The denominators we have are 7 and 14. The least common multiple (LCM) of 7 and 14 is 14.

Rewrite each fraction with this common denominator:

[tex]\[ \frac{-3}{7} = \frac{-3 \cdot 2}{7 \cdot 2} = \frac{-6}{14} \][/tex]

[tex]\[ \frac{3}{7} = \frac{3 \cdot 2}{7 \cdot 2} = \frac{6}{14} \][/tex]

So, the expression becomes:

[tex]\[ \frac{-6}{14} - \frac{1}{14} - \frac{6}{14} \][/tex]

### Step 2: Perform the Subtraction

Now, we can subtract the fractions because they all have the same denominator:

[tex]\[ \frac{-6 - 1 - 6}{14} \][/tex]

Combine the numerators:

[tex]\[ \frac{-6 - 1 - 6}{14} = \frac{-13}{14} \][/tex]

### Step 3: Simplifying

The fraction [tex]\(\frac{-13}{14}\)[/tex] cannot be simplified further.

### Step 4: Converting to Decimal

Finally, let's convert this fraction to its decimal form:

[tex]\[ \frac{-13}{14} \approx -0.9285714285714286 \][/tex]

### Results for Each Fraction and the Final Answer

- The decimal equivalent of [tex]\(\frac{-3}{7}\)[/tex] is approximately [tex]\(-0.42857142857142855\)[/tex].
- The decimal equivalent of [tex]\(\frac{1}{14}\)[/tex] is approximately [tex]\(0.07142857142857142\)[/tex].
- The decimal equivalent of [tex]\(\frac{3}{7}\)[/tex] is approximately [tex]\(0.42857142857142855\)[/tex].

The final result of the expression [tex]\(\frac{-3}{7} - \frac{1}{14} - \frac{3}{7}\)[/tex] is approximately [tex]\(-0.9285714285714286\)[/tex].

Thus, the detailed step-by-step solution leads us to the final result:
[tex]\[ \frac{-13}{14} \approx -0.9285714285714286 \][/tex]