Use the commutative property to write an expression that is equivalent to [tex]5f + f[/tex].

A. [tex]13f + f[/tex]

B. [tex]8f + f + 5f[/tex]

C. [tex](8 + 5 + 1)f[/tex]



Answer :

Sure, let's go step by step to use the commutative property to simplify the given expression:

1. The original expression given to us is [tex]\(8f + 5f + f\)[/tex].

2. Using the commutative property of addition, which states that the order in which we add numbers does not change the sum, we can rearrange the terms:
[tex]\[8f + 5f + f\][/tex]
This holds true regardless of how we group the terms, so we can proceed to combine the like terms.

3. Combine the coefficients of [tex]\(f\)[/tex]. The coefficients are the numbers in front of the variable [tex]\(f\)[/tex]. In this expression, the coefficients are 8, 5, and 1:
[tex]\[8f + 5f + f\][/tex]
can be written as:
[tex]\[(8 + 5 + 1)f\][/tex]

4. Add the coefficients together:
[tex]\[8 + 5 + 1 = 14\][/tex]

5. Therefore, the simplified expression is:
[tex]\[14f\][/tex]

So, the expression [tex]\(8f + 5f + f\)[/tex] simplifies to [tex]\(14f\)[/tex].