On your own paper, solve the system of equations using substitution and identify the solution.

[tex]y = x - 4[/tex]
[tex]4x + y = 26[/tex]

A. (2, 6)
B. (6, 2)
C. (4.4, 0.4)
D. (10, 6)
E. (0.4, 4.4)
F. (6, 10)



Answer :

To solve the system of equations using substitution, follow these steps:

Given equations:
1. [tex]\( y = x - 4 \)[/tex]
2. [tex]\( 4x + y = 26 \)[/tex]

### Step 1: Substitute the expression for [tex]\( y \)[/tex] from the first equation into the second equation.

From the first equation, we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x - 4 \][/tex]

Now, substitute [tex]\( y = x - 4 \)[/tex] into the second equation:
[tex]\[ 4x + (x - 4) = 26 \][/tex]

### Step 2: Simplify the equation and solve for [tex]\( x \)[/tex].

Combine like terms:
[tex]\[ 4x + x - 4 = 26 \][/tex]
[tex]\[ 5x - 4 = 26 \][/tex]

Add 4 to both sides of the equation:
[tex]\[ 5x = 30 \][/tex]

Divide both sides by 5:
[tex]\[ x = 6 \][/tex]

### Step 3: Solve for [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex].

Substitute [tex]\( x = 6 \)[/tex] back into the first equation:
[tex]\[ y = 6 - 4 \][/tex]
[tex]\[ y = 2 \][/tex]

### Step 4: Write the solution as an ordered pair.

The solution to the system of equations is:
[tex]\[ (x, y) = (6, 2) \][/tex]

Thus, the answer is [tex]\((6, 2)\)[/tex].