Answer :
To solve the system of equations using substitution, we will follow these steps methodically:
Step 1: Write down the given system of equations.
[tex]\[ \begin{array}{l} s = t + 4 \\ 2t + s = 19 \end{array} \][/tex]
Step 2: Substitute [tex]\( s \)[/tex] from the first equation into the second equation.
From equation 1, we have:
[tex]\[ s = t + 4 \][/tex]
Now substitute [tex]\( s \)[/tex] in the second equation:
[tex]\[ 2t + (t + 4) = 19 \][/tex]
Step 3: Simplify and solve for [tex]\( t \)[/tex].
Combine like terms:
[tex]\[ 2t + t + 4 = 19 \][/tex]
[tex]\[ 3t + 4 = 19 \][/tex]
Subtract 4 from both sides to isolate the [tex]\( 3t \)[/tex] term:
[tex]\[ 3t = 15 \][/tex]
Divide both sides by 3:
[tex]\[ t = 5 \][/tex]
Step 4: Substitute [tex]\( t = 5 \)[/tex] back into the first equation to find [tex]\( s \)[/tex].
Using the first equation:
[tex]\[ s = t + 4 \][/tex]
Substitute [tex]\( t = 5 \)[/tex]:
[tex]\[ s = 5 + 4 \][/tex]
[tex]\[ s = 9 \][/tex]
Step 5: Confirm the solution.
We have thus found:
[tex]\[ s = 9 \quad \text{and} \quad t = 5 \][/tex]
Step 6: Verify the values.
Substitute [tex]\( s = 9 \)[/tex] and [tex]\( t = 5 \)[/tex] back into the second equation to verify:
[tex]\[ 2t + s = 19 \][/tex]
[tex]\[ 2(5) + 9 = 19 \][/tex]
[tex]\[ 10 + 9 = 19 \][/tex]
[tex]\[ 19 = 19 \][/tex]
The solution [tex]\( (s, t) = (9, 5) \)[/tex] satisfies both equations, confirming that our solution is correct.
Step 7: Identify the correct option.
Among the provided options:
[tex]\[ (9, 5), (8, 12), (5, 9), (12, 8), (7.5, 11.5), (11.5, 7.5) \][/tex]
The solution [tex]\( (9, 5) \)[/tex] corresponds to the first option.
Thus, the solution to the system of equations is:
[tex]\[ (s, t) = (9, 5) \][/tex]
and the correct answer among the given options is:
[tex]\[ \text{Option 1 (9, 5)} \][/tex]
Step 1: Write down the given system of equations.
[tex]\[ \begin{array}{l} s = t + 4 \\ 2t + s = 19 \end{array} \][/tex]
Step 2: Substitute [tex]\( s \)[/tex] from the first equation into the second equation.
From equation 1, we have:
[tex]\[ s = t + 4 \][/tex]
Now substitute [tex]\( s \)[/tex] in the second equation:
[tex]\[ 2t + (t + 4) = 19 \][/tex]
Step 3: Simplify and solve for [tex]\( t \)[/tex].
Combine like terms:
[tex]\[ 2t + t + 4 = 19 \][/tex]
[tex]\[ 3t + 4 = 19 \][/tex]
Subtract 4 from both sides to isolate the [tex]\( 3t \)[/tex] term:
[tex]\[ 3t = 15 \][/tex]
Divide both sides by 3:
[tex]\[ t = 5 \][/tex]
Step 4: Substitute [tex]\( t = 5 \)[/tex] back into the first equation to find [tex]\( s \)[/tex].
Using the first equation:
[tex]\[ s = t + 4 \][/tex]
Substitute [tex]\( t = 5 \)[/tex]:
[tex]\[ s = 5 + 4 \][/tex]
[tex]\[ s = 9 \][/tex]
Step 5: Confirm the solution.
We have thus found:
[tex]\[ s = 9 \quad \text{and} \quad t = 5 \][/tex]
Step 6: Verify the values.
Substitute [tex]\( s = 9 \)[/tex] and [tex]\( t = 5 \)[/tex] back into the second equation to verify:
[tex]\[ 2t + s = 19 \][/tex]
[tex]\[ 2(5) + 9 = 19 \][/tex]
[tex]\[ 10 + 9 = 19 \][/tex]
[tex]\[ 19 = 19 \][/tex]
The solution [tex]\( (s, t) = (9, 5) \)[/tex] satisfies both equations, confirming that our solution is correct.
Step 7: Identify the correct option.
Among the provided options:
[tex]\[ (9, 5), (8, 12), (5, 9), (12, 8), (7.5, 11.5), (11.5, 7.5) \][/tex]
The solution [tex]\( (9, 5) \)[/tex] corresponds to the first option.
Thus, the solution to the system of equations is:
[tex]\[ (s, t) = (9, 5) \][/tex]
and the correct answer among the given options is:
[tex]\[ \text{Option 1 (9, 5)} \][/tex]