On your own paper, solve the system of equations using substitution and identify the solution.

[tex]\[
\begin{array}{l}
s = t + 4 \\
2t + s = 19
\end{array}
\][/tex]

A. [tex]\((9, 5)\)[/tex]
B. [tex]\((8, 12)\)[/tex]
C. [tex]\((5, 9)\)[/tex]
D. [tex]\((12, 8)\)[/tex]
E. [tex]\((7.5, 11.5)\)[/tex]
F. [tex]\((11.5, 7.5)\)[/tex]



Answer :

To solve the system of equations using substitution, we will follow these steps methodically:

Step 1: Write down the given system of equations.
[tex]\[ \begin{array}{l} s = t + 4 \\ 2t + s = 19 \end{array} \][/tex]

Step 2: Substitute [tex]\( s \)[/tex] from the first equation into the second equation.

From equation 1, we have:
[tex]\[ s = t + 4 \][/tex]

Now substitute [tex]\( s \)[/tex] in the second equation:
[tex]\[ 2t + (t + 4) = 19 \][/tex]

Step 3: Simplify and solve for [tex]\( t \)[/tex].

Combine like terms:
[tex]\[ 2t + t + 4 = 19 \][/tex]
[tex]\[ 3t + 4 = 19 \][/tex]

Subtract 4 from both sides to isolate the [tex]\( 3t \)[/tex] term:
[tex]\[ 3t = 15 \][/tex]

Divide both sides by 3:
[tex]\[ t = 5 \][/tex]

Step 4: Substitute [tex]\( t = 5 \)[/tex] back into the first equation to find [tex]\( s \)[/tex].

Using the first equation:
[tex]\[ s = t + 4 \][/tex]

Substitute [tex]\( t = 5 \)[/tex]:
[tex]\[ s = 5 + 4 \][/tex]
[tex]\[ s = 9 \][/tex]

Step 5: Confirm the solution.

We have thus found:
[tex]\[ s = 9 \quad \text{and} \quad t = 5 \][/tex]

Step 6: Verify the values.

Substitute [tex]\( s = 9 \)[/tex] and [tex]\( t = 5 \)[/tex] back into the second equation to verify:
[tex]\[ 2t + s = 19 \][/tex]
[tex]\[ 2(5) + 9 = 19 \][/tex]
[tex]\[ 10 + 9 = 19 \][/tex]
[tex]\[ 19 = 19 \][/tex]

The solution [tex]\( (s, t) = (9, 5) \)[/tex] satisfies both equations, confirming that our solution is correct.

Step 7: Identify the correct option.

Among the provided options:
[tex]\[ (9, 5), (8, 12), (5, 9), (12, 8), (7.5, 11.5), (11.5, 7.5) \][/tex]

The solution [tex]\( (9, 5) \)[/tex] corresponds to the first option.

Thus, the solution to the system of equations is:
[tex]\[ (s, t) = (9, 5) \][/tex]
and the correct answer among the given options is:
[tex]\[ \text{Option 1 (9, 5)} \][/tex]

Other Questions