Answer :
To find the value of the expression [tex]\( w^2 + 3w - 11 \)[/tex] when [tex]\( w = -5 \)[/tex], we will substitute [tex]\(-5\)[/tex] for [tex]\( w \)[/tex] in the expression and simplify it step-by-step.
First, substitute [tex]\(-5\)[/tex] for [tex]\( w \)[/tex]:
[tex]\[ (-5)^2 + 3(-5) - 11 \][/tex]
Next, evaluate each part of the expression:
1. Calculate [tex]\((-5)^2\)[/tex]:
[tex]\[ (-5)^2 = 25 \][/tex]
2. Calculate [tex]\(3 \cdot (-5)\)[/tex]:
[tex]\[ 3 \cdot (-5) = -15 \][/tex]
3. Combine these values and then subtract 11:
[tex]\[ 25 + (-15) - 11 \][/tex]
Simplify this step-by-step:
[tex]\[ 25 - 15 = 10 \][/tex]
[tex]\[ 10 - 11 = -1 \][/tex]
Therefore, the value of the expression when [tex]\( w = -5 \)[/tex] is:
[tex]\( -1 \)[/tex]
The correct answer is D. -1.
First, substitute [tex]\(-5\)[/tex] for [tex]\( w \)[/tex]:
[tex]\[ (-5)^2 + 3(-5) - 11 \][/tex]
Next, evaluate each part of the expression:
1. Calculate [tex]\((-5)^2\)[/tex]:
[tex]\[ (-5)^2 = 25 \][/tex]
2. Calculate [tex]\(3 \cdot (-5)\)[/tex]:
[tex]\[ 3 \cdot (-5) = -15 \][/tex]
3. Combine these values and then subtract 11:
[tex]\[ 25 + (-15) - 11 \][/tex]
Simplify this step-by-step:
[tex]\[ 25 - 15 = 10 \][/tex]
[tex]\[ 10 - 11 = -1 \][/tex]
Therefore, the value of the expression when [tex]\( w = -5 \)[/tex] is:
[tex]\( -1 \)[/tex]
The correct answer is D. -1.