Answer :
To solve the system of equations:
[tex]\[ \begin{align*} 1. & \quad x + y - z = 4 \\ 2. & \quad 2x + z = 7 \\ 3. & \quad 3x - 2y = 5 \end{align*} \][/tex]
### Step 1: Solve Equation 2 for [tex]\( z \)[/tex]
From equation [tex]\( 2x + z = 7 \)[/tex]:
[tex]\[ z = 7 - 2x \][/tex]
### Step 2: Substitute [tex]\( z \)[/tex] into Equation 1
Substitute [tex]\( z = 7 - 2x \)[/tex] into equation [tex]\( x + y - z = 4 \)[/tex]:
[tex]\[ x + y - (7 - 2x) = 4 \][/tex]
Simplifying this:
[tex]\[ x + y - 7 + 2x = 4 \\ 3x + y - 7 = 4 \\ 3x + y = 11 \quad \text{(Equation 4)} \][/tex]
### Step 3: Solve for [tex]\( y \)[/tex] using Equation 4
From equation [tex]\( 3x + y = 11 \)[/tex]:
[tex]\[ y = 11 - 3x \][/tex]
### Step 4: Substitute [tex]\( y \)[/tex] into Equation 3
Substitute [tex]\( y = 11 - 3x \)[/tex] into equation [tex]\( 3x - 2y = 5 \)[/tex]:
[tex]\[ 3x - 2(11 - 3x) = 5 \][/tex]
Simplifying this:
[tex]\[ 3x - 22 + 6x = 5 \\ 9x - 22 = 5 \\ 9x = 27 \\ x = 3 \][/tex]
### Step 5: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex] and [tex]\( z \)[/tex]
Substitute [tex]\( x = 3 \)[/tex] into [tex]\( y = 11 - 3x \)[/tex]:
[tex]\[ y = 11 - 3(3) \\ y = 11 - 9 \\ y = 2 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] into [tex]\( z = 7 - 2x \)[/tex]:
[tex]\[ z = 7 - 2(3) \\ z = 7 - 6 \\ z = 1 \][/tex]
### Summary
The solution to the system of equations is:
[tex]\[ (x, y, z) = (3, 2, 1) \][/tex]
### Verification
To ensure the solution is correct, we can substitute [tex]\( (x, y, z) = (3, 2, 1) \)[/tex] back into the original equations:
[tex]\[ 1. \quad 3 + 2 - 1 = 4 \quad \text{(True)} \\ 2. \quad 2(3) + 1 = 7 \quad \text{(True)} \\ 3. \quad 3(3) - 2(2) = 5 \quad \text{(True)} \][/tex]
Since all three equations hold true, [tex]\((x, y, z) = (3, 2, 1)\)[/tex] is indeed the correct solution.
[tex]\[ \begin{align*} 1. & \quad x + y - z = 4 \\ 2. & \quad 2x + z = 7 \\ 3. & \quad 3x - 2y = 5 \end{align*} \][/tex]
### Step 1: Solve Equation 2 for [tex]\( z \)[/tex]
From equation [tex]\( 2x + z = 7 \)[/tex]:
[tex]\[ z = 7 - 2x \][/tex]
### Step 2: Substitute [tex]\( z \)[/tex] into Equation 1
Substitute [tex]\( z = 7 - 2x \)[/tex] into equation [tex]\( x + y - z = 4 \)[/tex]:
[tex]\[ x + y - (7 - 2x) = 4 \][/tex]
Simplifying this:
[tex]\[ x + y - 7 + 2x = 4 \\ 3x + y - 7 = 4 \\ 3x + y = 11 \quad \text{(Equation 4)} \][/tex]
### Step 3: Solve for [tex]\( y \)[/tex] using Equation 4
From equation [tex]\( 3x + y = 11 \)[/tex]:
[tex]\[ y = 11 - 3x \][/tex]
### Step 4: Substitute [tex]\( y \)[/tex] into Equation 3
Substitute [tex]\( y = 11 - 3x \)[/tex] into equation [tex]\( 3x - 2y = 5 \)[/tex]:
[tex]\[ 3x - 2(11 - 3x) = 5 \][/tex]
Simplifying this:
[tex]\[ 3x - 22 + 6x = 5 \\ 9x - 22 = 5 \\ 9x = 27 \\ x = 3 \][/tex]
### Step 5: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex] and [tex]\( z \)[/tex]
Substitute [tex]\( x = 3 \)[/tex] into [tex]\( y = 11 - 3x \)[/tex]:
[tex]\[ y = 11 - 3(3) \\ y = 11 - 9 \\ y = 2 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] into [tex]\( z = 7 - 2x \)[/tex]:
[tex]\[ z = 7 - 2(3) \\ z = 7 - 6 \\ z = 1 \][/tex]
### Summary
The solution to the system of equations is:
[tex]\[ (x, y, z) = (3, 2, 1) \][/tex]
### Verification
To ensure the solution is correct, we can substitute [tex]\( (x, y, z) = (3, 2, 1) \)[/tex] back into the original equations:
[tex]\[ 1. \quad 3 + 2 - 1 = 4 \quad \text{(True)} \\ 2. \quad 2(3) + 1 = 7 \quad \text{(True)} \\ 3. \quad 3(3) - 2(2) = 5 \quad \text{(True)} \][/tex]
Since all three equations hold true, [tex]\((x, y, z) = (3, 2, 1)\)[/tex] is indeed the correct solution.