If [tex]$P=(3,1)$[/tex] and [tex]$Q=(-3,-7)$[/tex], find the midpoint of segment [tex][tex]$PQ$[/tex][/tex].

([tex] ? [/tex], [tex] ? [/tex])



Answer :

To find the midpoint of a segment [tex]\( P Q \)[/tex] with endpoints [tex]\( P = (3, 1) \)[/tex] and [tex]\( Q = (-3, -7) \)[/tex], we use the midpoint formula. The midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Here, the coordinates of point [tex]\( P \)[/tex] are [tex]\( (3, 1) \)[/tex] and the coordinates of point [tex]\( Q \)[/tex] are [tex]\( (-3, -7) \)[/tex].

Substitute [tex]\( x_1 = 3 \)[/tex], [tex]\( y_1 = 1 \)[/tex], [tex]\( x_2 = -3 \)[/tex], and [tex]\( y_2 = -7 \)[/tex] into the midpoint formula:

[tex]\[ M_x = \frac{3 + (-3)}{2} \][/tex]
[tex]\[ M_y = \frac{1 + (-7)}{2} \][/tex]

Now, calculate each component separately:

1. For [tex]\( M_x \)[/tex]:
[tex]\[ M_x = \frac{3 - 3}{2} = \frac{0}{2} = 0 \][/tex]

2. For [tex]\( M_y \)[/tex]:
[tex]\[ M_y = \frac{1 - 7}{2} = \frac{-6}{2} = -3 \][/tex]

Therefore, the coordinates of the midpoint [tex]\( M \)[/tex] are:

[tex]\[ M = (0, -3) \][/tex]

So, the midpoint of segment [tex]\( P Q \)[/tex] is [tex]\( (0, -3) \)[/tex].