Answer :

To solve the expression [tex]\(\left(-2x^2 - 7\right) + \left(8x^2 - 3\right)\)[/tex], we will remove the parentheses and combine the like terms.

1. Start with the given expression:
[tex]\[ \left(-2x^2 - 7\right) + \left(8x^2 - 3\right) \][/tex]

2. Remove the parentheses:
[tex]\[ -2x^2 - 7 + 8x^2 - 3 \][/tex]

3. Combine the like terms:
- For the [tex]\(x^2\)[/tex] terms: [tex]\( -2x^2 + 8x^2 \)[/tex]
- For the constant terms: [tex]\( -7 - 3 \)[/tex]

4. Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ -2x^2 + 8x^2 = 6x^2 \][/tex]

5. Combine the constant terms:
[tex]\[ -7 - 3 = -10 \][/tex]

So, the simplified expression after combining like terms is:
[tex]\[ 6x^2 - 10 \][/tex]

Therefore, the result of the operation is [tex]\(6x^2 - 10\)[/tex].