Choose the symbol that correctly compares the fractions below.

[tex]
\frac{1}{9} \, ? \, \frac{4}{6}
[/tex]

A. [tex]=$[/tex]
B. [tex]\ \textless \ $[/tex]
C. [tex]\ \textgreater \ $[/tex]



Answer :

To determine how the fractions [tex]\(\frac{1}{9}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex] compare, let's follow these steps:

1. Convert both fractions to their decimal forms.
- [tex]\(\frac{1}{9}\)[/tex] is approximately [tex]\(0.1111\)[/tex].
- [tex]\(\frac{4}{6}\)[/tex] simplifies to [tex]\(\frac{2}{3}\)[/tex], which is approximately [tex]\(0.6667\)[/tex].

2. Compare the decimal values:
- [tex]\(0.1111\)[/tex] (representing [tex]\(\frac{1}{9}\)[/tex])
- [tex]\(0.6667\)[/tex] (representing [tex]\(\frac{4}{6}\)[/tex])

3. Since [tex]\(0.1111\)[/tex] is less than [tex]\(0.6667\)[/tex], we can conclude that:
[tex]\[ \frac{1}{9} < \frac{4}{6} \][/tex]

Therefore, the correct symbol to compare [tex]\(\frac{1}{9}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex] is [tex]\(<\)[/tex].

So, the answer is:
B. [tex]\(<\)[/tex]