Which expression is equivalent to [tex]3(x-6)+5(x-4)[/tex]?

A) [tex]9x-22[/tex]

B) [tex]8x-38[/tex]

C) [tex]15x^2-38x[/tex]

D) [tex]8x-10[/tex]



Answer :

To determine which expression is equivalent to [tex]\(3(x-6) + 5(x-4)\)[/tex], we need to simplify the given expression step-by-step.

Let's start by expanding the expression:

1. Distribute the constants inside the parentheses:
[tex]\[ 3(x - 6) = 3x - 18 \][/tex]
[tex]\[ 5(x - 4) = 5x - 20 \][/tex]

2. Next, add the results from step 1 together:
[tex]\[ 3x - 18 + 5x - 20 \][/tex]

3. Combine like terms (the terms that contain [tex]\(x\)[/tex] and the constant terms):
- Combine the [tex]\(x\)[/tex]-terms: [tex]\(3x + 5x = 8x\)[/tex]
- Combine the constant terms: [tex]\(-18 - 20 = -38\)[/tex]

So, the simplified expression is:
[tex]\[ 8x - 38 \][/tex]

Comparing this with the given answer choices, we find that the equivalent expression is:

B) [tex]\(8x - 38\)[/tex]

Therefore, the expression [tex]\(3(x-6) + 5(x-4)\)[/tex] simplifies to [tex]\(8x - 38\)[/tex].