Answer :
To solve for [tex]\(d\)[/tex] in the equation [tex]\( \frac{d}{t} = r \)[/tex], follow these steps:
1. Identify the equation: The given equation is
[tex]\[ \frac{d}{t} = r. \][/tex]
2. Isolate the variable [tex]\(d\)[/tex]: To isolate [tex]\(d\)[/tex], you need to eliminate the fraction. You can achieve this by multiplying both sides of the equation by the denominator [tex]\(t\)[/tex].
3. Multiply both sides by [tex]\(t\)[/tex]:
[tex]\[ t \cdot \frac{d}{t} = r \cdot t. \][/tex]
4. Simplify the expression:
[tex]\[ d = r \cdot t. \][/tex]
Therefore, the solution for [tex]\(d\)[/tex] is:
[tex]\[ d = r \cdot t. \][/tex]
1. Identify the equation: The given equation is
[tex]\[ \frac{d}{t} = r. \][/tex]
2. Isolate the variable [tex]\(d\)[/tex]: To isolate [tex]\(d\)[/tex], you need to eliminate the fraction. You can achieve this by multiplying both sides of the equation by the denominator [tex]\(t\)[/tex].
3. Multiply both sides by [tex]\(t\)[/tex]:
[tex]\[ t \cdot \frac{d}{t} = r \cdot t. \][/tex]
4. Simplify the expression:
[tex]\[ d = r \cdot t. \][/tex]
Therefore, the solution for [tex]\(d\)[/tex] is:
[tex]\[ d = r \cdot t. \][/tex]