13. प्रम्बाले दोर्जेलाई रु. [tex]$2,00,000$[/tex] वार्षिक [tex]$16 \%$[/tex] ब्याजदरमा ॠण दियो। 1 वर्ष 6 महिनाको अन्त्यमा,

Pemba lent Rs [tex]$2,00,000$[/tex] to Dorje at the rate of [tex]$16 \%$[/tex] per annum. At the end of 1 year 6 months,

(a) प्रचलित संकेत अनुसार [tex]$P \left(1+\frac{ R }{400}\right)^{4 T}$[/tex] ले के जनाउँदछ ?
(In usual notations, what does [tex]$P \left(1+\frac{ R }{400}\right)^{4 T}$[/tex] stand for?)

(b) वार्षिक चक्रीय ब्याज अनुसार उसले कति ब्याज पाउँछ?
(How much annual compound interest will he receive?)

(c) अर्धवार्षिक चक्रीय ब्याज अनुसार उसले कति ब्याज पाउँछ?
(How much semi-annual compound interest will he receive?)

(d) अर्धवार्षिक चक्रीय ब्याज र वार्षिक चक्रीय ब्याजको अन्तर पत्ता लगाउनुहोस्।
Find the difference between semi-annual compound interest and annual compound interest.

(e) कुन ब्याज प्रणाली अनुसार दोर्जेलाई ॠण लिन सुभाव दिनुहुन्छ? कारण दिनुहोस्।
Which interest system do you suggest Dorje to borrow the money? Give a reason.

Ans:
(b) Rs [tex]$50,560$[/tex]
(c) Rs [tex]$51,942.40$[/tex]
(d) Rs [tex]$1,382.40$[/tex]



Answer :

Let's break down each part of the question and solve it step-by-step:

### Part (a)
P \left(1+\frac{ R }{400}\right)^{4 T} refers to the amount received when the principal P is compounded quarterly at an annual interest rate [tex]\(R\%\)[/tex] for a duration of [tex]\(T\)[/tex] years. It shows the effect of converting the annual rate into quarterly increments, thus applying compound interest every quarter.

### Part (b)
To determine how much annual compound interest Pemba will receive at the end of 1 year 6 months:

1. Principal (P): Rs 2,00,000
2. Annual Interest Rate (R): 16% (0.16 as a decimal)
3. Time (T): 1.5 years

Annual compound interest formula:
[tex]\[ A = P \left(1 + R \right)^{T} \][/tex]

Where:
- [tex]\(P = 2,00,000\)[/tex]
- [tex]\(R = 0.16\)[/tex]
- [tex]\(T = 1.5\)[/tex]

First, find the amount [tex]\(A\)[/tex]:
[tex]\[ A = 2,00,000 \left(1 + 0.16 \right)^{1.5} = 2,00,000 \left(1.16\right)^{1.5} \][/tex]

[tex]\[ A \approx 2,00,000 \times 1.24864 \][/tex]

[tex]\[ A \approx 2,49,871.65 \][/tex]

Now, to find the interest earned:
[tex]\[ \text{Interest} = A - P = 2,49,871.65 - 2,00,000 \approx 49,871.65 \][/tex]

So, the annual compound interest will be approximately Rs 49,871.65.

### Part (c)
To determine how much semi-annual compound interest Pemba will receive:

1. Principal (P): Rs 2,00,000
2. Annual Interest Rate (R): 16% (0.16 as a decimal)
3. Time (T): 1.5 years
4. Semi-annual period rate: [tex]\(0.16 / 2 = 0.08\)[/tex]
5. Number of periods: [tex]\(2 \times 1.5 = 3\)[/tex]

Semi-annual compound interest formula:
[tex]\[ A = P \left(1 + \frac{R}{2} \right)^{2T} \][/tex]

Where:
- [tex]\(P = 2,00,000\)[/tex]
- [tex]\(R/2 = 0.08\)[/tex]
- [tex]\(2T = 3\)[/tex]

First, find the amount [tex]\(A\)[/tex]:
[tex]\[ A = 2,00,000 \left(1 + 0.08 \right)^{3} = 2,00,000 \left(1.08\right)^{3} \][/tex]

[tex]\[ A \approx 2,00,000 \times 1.25971 \][/tex]

[tex]\[ A \approx 2,51,942.40 \][/tex]

Now, to find the interest earned:
[tex]\[ \text{Interest} = A - P = 2,51,942.40 - 2,00,000 \approx 51,942.40 \][/tex]

So, the semi-annual compound interest will be approximately Rs 51,942.40.

### Part (d)
To find the difference between semi-annual compound interest and annual compound interest:

[tex]\[ \text{Difference} = 51,942.40 - 49,871.65 \][/tex]

[tex]\[ \text{Difference} \approx 2,070.75 \][/tex]

So, the difference in interest is approximately Rs 2,070.75.

### Part (e)
To determine which interest system to suggest Dorje for borrowing:

- Annual Compound Interest: Rs 49,871.65
- Semi-Annual Compound Interest: Rs 51,942.40

The semi-annual compound interest yields a higher interest of Rs 2,070.75 more than annual compound interest.

Suggestion:
I would suggest that Dorje borrow under the annual compound interest system because it results in a lower total interest amount compared to the semi-annual compounding. This will make the repayment amount lower, saving Dorje money on interest.