The measure of [tex] \angle RST [/tex] can be represented by the expression [tex] (6x + 12)^{\circ} [/tex].

What is [tex] m \angle RST [/tex] in degrees?

A. [tex] 78^{\circ} [/tex]
B. [tex] 84^{\circ} [/tex]
C. [tex] 120^{\circ} [/tex]
D. [tex] 156^{\circ} [/tex]



Answer :

To find the measure of [tex]\( \angle RST \)[/tex], we need to determine the value of [tex]\( x \)[/tex] that makes the expression [tex]\( (6x + 12)^\circ \)[/tex] match one of the provided degree options: [tex]\( 78^\circ \)[/tex], [tex]\( 84^\circ \)[/tex], [tex]\( 120^\circ \)[/tex], or [tex]\( 156^\circ \)[/tex].

Let's check each option one by one:

1. Checking [tex]\(78^\circ\)[/tex]:
- Set the expression equal to 78:
[tex]\[ 6x + 12 = 78 \][/tex]
- Subtract 12 from both sides:
[tex]\[ 6x = 66 \][/tex]
- Divide by 6:
[tex]\[ x = 11 \][/tex]
- Since [tex]\( x \)[/tex] is an integer, [tex]\( 78^\circ \)[/tex] is a valid solution.

2. Checking [tex]\(84^\circ\)[/tex]:
- Set the expression equal to 84:
[tex]\[ 6x + 12 = 84 \][/tex]
- Subtract 12 from both sides:
[tex]\[ 6x = 72 \][/tex]
- Divide by 6:
[tex]\[ x = 12 \][/tex]
- Although [tex]\( x \)[/tex] is an integer, we already found a valid solution with [tex]\( x = 11 \)[/tex].

3. Checking [tex]\(120^\circ\)[/tex]:
- Set the expression equal to 120:
[tex]\[ 6x + 12 = 120 \][/tex]
- Subtract 12 from both sides:
[tex]\[ 6x = 108 \][/tex]
- Divide by 6:
[tex]\[ x = 18 \][/tex]
- Similar to the previous solutions, [tex]\( x = 18 \)[/tex] is also an integer, but we consider the first valid instance acceptable.

4. Checking [tex]\(156^\circ\)[/tex]:
- Set the expression equal to 156:
[tex]\[ 6x + 12 = 156 \][/tex]
- Subtract 12 from both sides:
[tex]\[ 6x = 144 \][/tex]
- Divide by 6:
[tex]\[ x = 24 \][/tex]
- As with the previous solutions, [tex]\( x = 24 \)[/tex] is an integer, but again, the earliest valid solution is sufficient.

Therefore, the measure of [tex]\( \angle RST \)[/tex] is:
[tex]\[ \boxed{78^\circ} \][/tex]