Question 10 (1 point)

[tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] form a linear pair and therefore are supplementary angles. If [tex]\(m \angle 1 = 7x - 6\)[/tex] and [tex]\(m \angle 2 = 5x + 18\)[/tex], what is [tex]\(m \angle 2\)[/tex]?

A. [tex]\(78^{\circ}\)[/tex]

B. [tex]\(82^{\circ}\)[/tex]

C. [tex]\(85^{\circ}\)[/tex]

D. [tex]\(88^{\circ}\)[/tex]



Answer :

To find the measure of [tex]\( m \angle 2 \)[/tex], let's go through the steps systematically:

1. Understand the problem:
[tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] are supplementary angles, which means their measures add up to [tex]\(180^\circ\)[/tex]. We are given:
[tex]\[ m \angle 1 = 7x - 6 \][/tex]
[tex]\[ m \angle 2 = 5x + 18 \][/tex]

2. Set up the equation:
Since the angles are supplementary, the sum of their measures is [tex]\(180^\circ\)[/tex]. Therefore, we can write:
[tex]\[ (7x - 6) + (5x + 18) = 180 \][/tex]

3. Simplify the equation:
Combine like terms:
[tex]\[ 7x - 6 + 5x + 18 = 180 \][/tex]
[tex]\[ 12x + 12 = 180 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] by first subtracting 12 from both sides:
[tex]\[ 12x = 168 \][/tex]
Then divide both sides by 12:
[tex]\[ x = 14 \][/tex]

5. Find [tex]\(m \angle 2\)[/tex]:
Substitute [tex]\(x = 14\)[/tex] back into the expression for [tex]\(m \angle 2\)[/tex]:
[tex]\[ m \angle 2 = 5x + 18 \][/tex]
[tex]\[ m \angle 2 = 5(14) + 18 \][/tex]
[tex]\[ m \angle 2 = 70 + 18 \][/tex]
[tex]\[ m \angle 2 = 88 \][/tex]

Thus, the measure of [tex]\( m \angle 2 \)[/tex] is [tex]\(88^\circ\)[/tex].

The correct answer is:
d) [tex]\(88^\circ\)[/tex]